
High-level synthesis

Think about it…

• Standard-cell methodology and tools were
developed for easy mapping of logic-level
design into IC layout.

• BUT: example:
32-bit: c = a + b.
We do not write 32 Boolean expressions with up to 64

variables each to indicate this simple operation.
Imagine having complex multi-chip systems described

in terms of 1 million or more Boolean equations.

Main goal

• The main goal is to explore design auto-mation
for synchronous digital systems at levels
above the logic level in a practical
environment.

• implement a system that is fast enough to allow
the synthesis of large designs in a reasonable
time

• high-level synthesis of synchronous digital
systems

• input is a sequential specification of the function
of a synchronous digital system, and possibly
constraints such as the number and/or the type
of the hardware modules to use, timing
constraints, etc.

• assigns every operation in the specification to a
control step (schedul-ing) and synthesizes the
necessary hardware (allocation)

• The resulting design consists of a finite state
machine (FSM) that implements the control
and a netlist specifying the data path

Description-Design-Technology
Dependence

Essential Issues in Synthesis

• Design Conceptualization
• Database Issues
• Technology Independence
• Design Learning
• Design Synthesis Complexity

Design Conceptualization

• Problem: design description is changing
with design over time

• generate different design views for
optimization or verification of different
aspects of a design

• allow manual modification of synthesized
design

• provide design quality metrics for
exploration and design evaluation

Database Issues
• A central database stores all aspects of the

design and generate different design views on
demand:
– Type-, format of a view

• initially built from the input description
• query the database for types of

components, their functionality:
– area, delay, performance, layout height, width and

shape

• supply a component for any given functionality
and constraint

Technology Independence
• On the layout level: technology independence can be

achieved by laying dimensionless objects on a virtual
grid

• Requires a change in the technology file containing
spacing rules

• Requires sophisticated compaction algorithms with
local optimization

• on the logic level: synthesizing design with generic
gates and then mapping generic gates into library
components by performing local transformations

Design Learning

• When a different ASIC library is used it is
necessary to redesign higher level
components to take advantage of the
new library.

• learning technology-adaptation rules

Design Synthesis Complexity

• system level synthesis to translate a set
of communicating processes into
register-transfer components

• component synthesis to translate
component descriptions into layouts

Theoretical background

• Turing-Church Thesis:
if an algorithm exists then there is an

equivalent Turing machine, recursively-
definable function, or applicable λ-function,
for that algorithm.

Szintézis során használt
algoritmusok

• THE SYNTHESIS IN-CORE MODEL
• DATA-FLOW ANALYSIS
• AS-FAST-AS-POSSIBLE SCHEDULING
• MODULE ASSIGNMENT
• PATH-BASED ALLOCATION
• Estimation
• Logic Minimization

THE SYNTHESIS IN-CORE
MODEL

• Magas-szintű nyelvből gráf reprezentáció
• Vezérlés folyam gráf (CFG)
• Adatfolyam gráf (DFG)

CFG

• Irányított gráf, CFG=(N,P)
• Csúcsok halmaza (N):

– Hozzárendelés,
– összeadás,
– logikai műveletek, stb…

• Élek halmaza (P):
– Precedencia relációk,
– egymást követő utasítások

• Összefüggő gráf

CFG

• Sorozat, szekvencia: egy él (n1,n2) eleme
P-nek azt jelenti, hogy n2 következik n1
végrehajtása után

• Feltételes végrehajtás: egy művelet után
egy másik művelet, ha a feltétel teljesül. A
feltétel Boolean kifejezés, melynek értéke
1, akkor végrehajtódik, különben 0.

• Iteráció: Ciklusok, amelyek a folyamat
iteratív viselkedését jelzik (loop).

DFG

• Irányított gráf, DFG=(N U V,D)
• Csúcsok halmaza:

– N: utasítások
– V: változók

• Élek halmaza:
– Adatkapcsolatok

• Nem feltétlenül összefüggő gráf

Példa

IBM Magas-szintű Szintézis
• The High-level IBM Synthesis system (HIS).
• HIS uses a design representation called the

SSIM (Sequential Synthesis In-core Model)
• The SSIM represents control and data

separately. Before high-level synthesis, the
SSIM contains only the behavior of a
design, i.e., a control-flow graph (CFG) and a
data-flow graph (DFG).

• Scheduling consists basically in control
synthesis and adds a control finite state machine
(FSM) to the SSIM. The synthesized FSM is
represented by its state transition graph.

• Allocation consists basically in data-path
synthesis and adds a data path to the SSIM.
The synthesized data-path is also represented
as a graph (netlist).

• The complete SSIM resides in memory
during high-level synthesis, thus achieving the
necessary speeds for design space
exploration and interactive design.

DATA-FLOW ANALYSIS

• Data-flow analysis is a technique to
determine the lifetime of values

• High-level synthesis often uses data-flow
analysis to determine the intended
behavior, for example, unfolding variables

• In HIS, lifetime information is used during
allocation and scheduling

AS-FAST-AS-POSSIBLE
SCHEDULING

• HIS uses As-Fast-As-Possible (AFAP) scheduling for
each possible path in the CFG.

• A path in the CFG is defined by conditional branches;
thus one path represents one possible execution
determined by the conditions on the conditional
branches.

• Although the number of paths may grow exponentially
with the number of nodes

• the number of paths represents the number of
different functions in the circuit

• Optimizing the length of all paths (length in number of
control steps), means minimizing the number of cycles
in each instruction.

AS-FAST-AS-POSSIBLE
SCHEDULING

• Paths are computed by performing a
depth-first traversal of the acyclic CFG.

• The CFG is made acyclic by removing
the feedback edges in loops

• Paths are computed starting at a given
first operation

Example

Constraints

• An implementation (and thus the schedule) is
usually restricted by so called hardware
constraints.
– I/O ports can either transmit or receive only one

distinct value per control step
– registers can be written only once per control step

• Constraints explicitly specified often indicate
area and delay characteristics of the desired
implementation:
– the maximum clock cycle
– the maximum number and type of the functional

units to be used

MODULE ASSIGNMENT

• The module assignment problem arises
when operations can be implemented by
more than one type of functional unit
(FU).

• Module assignment selects the FU to
implement each operation.

Example

PATH-BASED ALLOCATION

• clique covering (or coloring) based
allocation

• two separate steps:
– a complete, functional initial data path is

generated
– then optimized

Initial Data-Path Allocation

• Allocating functional units
• Allocating registers
• Defining the interconnections

(multiplexers) between functional units and
registers

• Deriving the control signals:
– load enable for registers
– operation selection for functional units
– selection for multiplexers

Data-Path Optimizations

• Optimizations in the data path comprise
register, functional unit and multiplexer
merging

• First a global conflict graph is generated
• The conflict graph is then colored to

determine the smallest amount of
hardware

Estimation

• For both constraint generation and data
path optimization, it is necessary to
estimate sizes and delays.

• it is extremely difficult at a high level.
• The models used are similar to typical

logic synthesis delay models.

Logic Minimization

• Logic minimization within HIS is performed
to optimize control signals on the fly

Output generation

• Output language generation is
straightforward.

• Any language capable of representing
netlists or RT-level hardware can be
chosen.

