
High-level synthesis



Think about it…

• Standard-cell methodology and tools were 
developed for easy mapping of  logic-level 
design  into IC  layout.

• BUT: example:
32-bit: c =  a + b.
We do not write 32 Boolean expressions with up  to 64 

variables each to indicate  this simple operation.
Imagine having complex multi-chip systems described 

in  terms of  1 million or more Boolean  equations.



Main goal

• The main goal is  to explore design auto-mation 
for synchronous digital systems  at  levels  
above the  logic  level  in  a practical 
environment.

• implement a system  that is fast enough  to allow 
the synthesis of  large designs in a reasonable 
time

• high-level synthesis of  synchronous digital 
systems



• input is a sequential specification of  the function 
of  a synchronous digital system, and possibly 
constraints such as the number and/or  the type 
of  the hardware modules  to use, timing 
constraints, etc.

• assigns every operation in the specification  to a 
control step (schedul-ing) and synthesizes the 
necessary hardware (allocation)

• The resulting design consists of  a finite  state 
machine  (FSM)  that  implements  the control  
and  a netlist specifying the data path



Description-Design-Technology 
Dependence



Essential Issues in Synthesis

• Design Conceptualization
• Database Issues
• Technology  Independence
• Design Learning
• Design Synthesis Complexity



Design Conceptualization

• Problem: design description is changing
with design over time

• generate different  design views for 
optimization or verification of  different  
aspects  of  a  design

• allow manual modification of synthesized  
design

• provide design quality metrics for 
exploration and design evaluation



Database Issues
• A central database stores all aspects of  the 

design and generate different  design views on 
demand:
– Type-, format of a view

• initially  built from  the  input  description
• query  the  database for  types  of  

components, their functionality:
– area, delay, performance,  layout height, width and 

shape

• supply a component  for any given functionality 
and  constraint



Technology  Independence
• On the layout  level: technology independence can be 

achieved by  laying dimensionless objects on a virtual 
grid

• Requires a  change in  the  technology  file containing 
spacing rules

• Requires sophisticated compaction  algorithms with  
local optimization

• on  the  logic level: synthesizing design with generic 
gates and then mapping generic gates into  library 
components by  performing  local  transformations



Design Learning

• When a different ASIC library is used it is 
necessary  to  redesign higher level 
components to  take advantage of  the 
new  library.

• learning  technology-adaptation rules



Design Synthesis Complexity

• system  level  synthesis  to translate  a set  
of  communicating  processes  into 
register-transfer  components

• component  synthesis to  translate 
component descriptions  into layouts



Theoretical background

• Turing-Church Thesis:
if an algorithm exists then there is an 

equivalent Turing machine, recursively-
definable function, or applicable λ-function, 
for that algorithm.



Szintézis során használt 
algoritmusok

• THE SYNTHESIS IN-CORE MODEL
• DATA-FLOW ANALYSIS
• AS-FAST-AS-POSSIBLE SCHEDULING
• MODULE ASSIGNMENT
• PATH-BASED ALLOCATION
• Estimation
• Logic Minimization



THE SYNTHESIS IN-CORE 
MODEL 

• Magas-szintű nyelvből gráf reprezentáció
• Vezérlés folyam gráf (CFG)
• Adatfolyam gráf (DFG)



CFG

• Irányított gráf, CFG=(N,P)
• Csúcsok halmaza (N):

– Hozzárendelés, 
– összeadás, 
– logikai műveletek, stb…

• Élek halmaza (P):
– Precedencia relációk, 
– egymást követő utasítások

• Összefüggő gráf



CFG

• Sorozat, szekvencia: egy él (n1,n2) eleme 
P-nek azt jelenti, hogy n2 következik n1 
végrehajtása után

• Feltételes végrehajtás: egy művelet után 
egy másik művelet, ha a feltétel teljesül. A 
feltétel Boolean kifejezés, melynek értéke 
1, akkor végrehajtódik, különben 0.

• Iteráció: Ciklusok, amelyek a folyamat 
iteratív viselkedését jelzik (loop).



DFG

• Irányított gráf, DFG=(N U V,D)
• Csúcsok halmaza:

– N: utasítások
– V: változók

• Élek halmaza:
– Adatkapcsolatok

• Nem feltétlenül összefüggő gráf



Példa



IBM Magas-szintű Szintézis
• The High-level IBM Synthesis system (HIS).
• HIS uses a design representation called the 

SSIM (Sequential Synthesis In-core Model)
• The SSIM  represents control and data 

separately. Before high-level  synthesis,  the  
SSIM  contains  only  the  behavior  of  a  
design,  i.e.,  a control-flow graph (CFG) and a 
data-flow graph (DFG).



• Scheduling consists basically in control 
synthesis and adds a control finite state machine 
(FSM) to the SSIM. The synthesized FSM  is  
represented by its  state transition graph. 

• Allocation consists basically  in data-path 
synthesis and adds a data path to the SSIM.  
The synthesized data-path is also represented 
as a graph (netlist). 

• The  complete  SSIM  resides  in  memory  
during  high-level  synthesis,  thus achieving  the  
necessary speeds  for  design  space 
exploration and interactive design. 





DATA-FLOW ANALYSIS 

• Data-flow analysis is a  technique to 
determine the  lifetime of  values

• High-level synthesis often uses data-flow 
analysis  to determine the  intended 
behavior, for example, unfolding variables

• In HIS, lifetime information is used during 
allocation and scheduling



AS-FAST-AS-POSSIBLE 
SCHEDULING

• HIS uses As-Fast-As-Possible (AFAP)  scheduling for
each possible path in the CFG.

• A path in  the CFG is defined by  conditional branches; 
thus one path represents one possible execution 
determined by  the conditions on  the conditional 
branches.

• Although the number of  paths may grow exponentially 
with the number of  nodes

• the number of  paths represents  the number of  
different functions in  the circuit

• Optimizing the length of  all paths (length in number of  
control steps), means minimizing the number of  cycles 
in each instruction.



AS-FAST-AS-POSSIBLE 
SCHEDULING

• Paths are computed by performing a 
depth-first traversal of  the acyclic CFG.

• The CFG  is made acyclic  by  removing  
the feedback edges  in  loops

• Paths are computed starting at a given 
first operation



Example



Constraints

• An  implementation (and thus the schedule) is 
usually  restricted by  so called hardware 
constraints.
– I/O ports can either transmit or receive only one 

distinct value per control step
– registers can be written only once per control step

• Constraints explicitly specified often indicate 
area and delay characteristics of  the desired 
implementation:
– the maximum clock cycle
– the maximum number and  type of  the functional

units to be used



MODULE ASSIGNMENT

• The module assignment  problem arises 
when operations can be  implemented by 
more than one type of  functional unit 
(FU).

• Module assignment selects the FU to  
implement each operation.



Example



PATH-BASED ALLOCATION

• clique covering (or coloring) based 
allocation

• two separate steps:
– a complete, functional  initial data path is 

generated
– then optimized



Initial Data-Path Allocation

• Allocating functional units
• Allocating registers
• Defining  the interconnections 

(multiplexers) between functional units and
registers

• Deriving  the control signals:
– load enable  for  registers
– operation selection for functional units
– selection for multiplexers



Data-Path Optimizations

• Optimizations  in  the  data  path  comprise  
register, functional  unit  and multiplexer 
merging

• First a global conflict graph is generated
• The conflict graph is then colored to 

determine the smallest amount of 
hardware



Estimation

• For  both constraint generation and data  
path optimization, it  is  necessary  to 
estimate sizes and delays.

• it is extremely difficult at a high level.
• The models used are similar to typical 

logic synthesis delay models.



Logic Minimization

• Logic minimization within HIS is performed 
to optimize control signals on the fly



Output generation

• Output  language generation  is 
straightforward.

• Any language capable of  representing 
netlists or RT-level hardware can be 
chosen.


