High-level synthesis

Think about It...

« Standard-cell methodology and tools were
developed for easy mapping of logic-level
design into IC layout.

« BUT: example:
32-bit: c= a+Db.
We do not write 32 Boolean expressions with up to 64
variables each to indicate this simple operation.

Imagine having complex multi-chip systems described
In terms of 1 million or more Boolean equations.

Main goal

 The main goal is to explore design auto-mation
for synchronous digital systems at levels
above the logic level In a practical
environment.

« Implement a system that is fast enough to allow
the synthesis of large designs in a reasonable
time

 high-level synthesis of synchronous digital
systems

 Input is a sequential specification of the function
of a synchronous digital system, and possibly
constraints such as the number and/or the type
of the hardware modules to use, timing
constraints, etc.

 assigns every operation in the specification to a
control step (schedul-ing) and synthesizes the
necessary hardware (allocation)

* The resulting design consists of a finite state
machine (FSM) that implements the control
and a netlist specifying the data path

Description-Design-Technology
Dependence

MODELS

ABSTRACTIONS STYLES

TECHNOLOGY

Essential Issues In Synthesis

Design Conceptualization
Database Issues
Technology Independence
Design Learning

Design Synthesis Complexity

Design Conceptualization

Problem: design description Is changing
with design over time

generate different design views for
optimization or verification of different
aspects of a design

allow manual modification of synthesized
design

provide design guality metrics for
exploration and design evaluation

Database Issues

A central database stores all aspects of the
design and generate different design views on
demand:

— Type-, format of a view
initially built from the input description

query the database for types of
components, their functionality:

— area, delay, performance, layout height, width and
shape

supply a component for any given functionality
and constraint

Technology Independence

On the layout level: technology independence can be
achieved by laying dimensionless objects on a virtual
grid

Requires a change in the technology file containing
spacing rules

Requires sophisticated compaction algorithms with
local optimization

on the logic level: synthesizing design with generic
gates and then mapping generic gates into library
components by performing local transformations

Design Learning

 When a different ASIC library is used it is
necessary to redesign higher level

components to take advantage of the
new library.

 learning technology-adaptation rules

Design Synthesis Complexity

» system level synthesis to translate a set
of communicating processes Into
register-transfer components

* component synthesis to translate
component descriptions into layouts

Theoretical background

* Turing-Church Thesis:

If an algorithm exists then there is an
equivalent Turing machine, recursively-
definable function, or applicable A-function,
for that algorithm.

Szintézis soran hasznalt
algoritmusok

THE SYNTHESIS IN-CORE MODEL
DATA-FLOW ANALYSIS
AS-FAST-AS-POSSIBLE SCHEDULING
MODULE ASSIGNMENT
PATH-BASED ALLOCATION
Estimation

Logic Minimization

THE SYNTHESIS IN-CORE
MODEL

« Magas-szintl nyelvbdl graf reprezentacio
* Vezeérles folyam graf (CFQG)
« Adatfolyam graf (DFG)

CFG

Iranyitott graf, CFG=(N,P)
Csucsok halmaza (N):
— Hozzarendeles,

— 0Sszeadas,
— logikal muveletek, stb...

Elek halmaza (P):

— Precedencia relaciok,
— egymast koveto utasitasok

Osszefligg6 graf

CFG

* Sorozat, szekvencia: egy €l (n1,n2) eleme
P-nek azt jelenti, hogy n2 kovetkezik n1
veégrehajtasa utan

* Felteteles végrehajtas: egy mlvelet utan
egy masik muvelet, ha a feltétel teljesul. A
feltetel Boolean kifejezes, melynek értéke
1, akkor végrehajtodik, kulonben 0.

* |teracio: Ciklusok, amelyek a folyamat
iterativ viselkedesét jelzik (loop).

DFG

Iranyitott graf, DFG=(N u V,D)
Csucsok halmaza:

— N: utasitasok

— V: valtozok

Elek halmaza:

— Adatkapcsolatok

Nem feltétlenul osszefugg6b graf

CFG

ire

o!dpc>®+popc
ibus

p }@) obus

bran ch\

!

Entity prefetch is
Port (branchpc, ibus in bit32;
branch, ire: in bit;
ppc, pope, obus: out bit
end prefetch;

architecture behavior of prefetch is
begin

process
variable pec, oldpe: bit32:=0;
begin
ppc <= pc,

popc <= oldpc;
obus <= 1bus + 4;
if (branch ="17) then

pc:= branchpc:
end if;
wait until (ire="1");
oldpc:=pc;
pc:=pc+4;

end process;
end behavior;

32);

IBM Magas-szintl Szintezis

* The High-level IBM Synthesis system (HIS).

* HIS uses a design representation called the
SSIM (Sequential Synthesis In-core Model)

« The SSIM represents control and data
separately. Before high-level synthesis, the
SSIM contains only the behavior of a
design, I.e., a control-flow graph (CFG) and a
data-flow graph (DFG).

« Scheduling consists basically in control
synthesis and adds a control finite state machine
(FSM) to the SSIM. The synthesized FSM s
represented by its state transition graph.

 Allocation consists basically in data-path

synthesis and adds a data path to the SSIM.

The synthesized data-path is also represented
as a graph (netlist).

« The complete SSIM resides in memory
during high-level synthesis, thus achieving the
necessary speeds for design space
exploration and interactive design.

Hierarchy
%

(o (&)
Control Data

.. Behavior| Control Data

7 - Flow Flow
module

Structure| State Data

subprogram \ Transitions| Path

Figure 3. The Sequential Synthesis In-Core Model SSIM

DATA-FLOW ANALYSIS

« Data-flow analysis is a technique to
determine the lifetime of values

* High-level synthesis often uses data-flow
analysis to determine the Intended
behavior, for example, unfolding variables

* In HIS, lifetime information Is used during
allocation and scheduling

AS-FAST-AS-POSSIBLE
SCHEDULING

HIS uses As-Fast-As-Possible (AFAP) scheduling for
each possible path in the CFG.

A path in the CFG is defined by conditional branches;
thus one path represents one possible execution
determined by the conditions on the conditional
branches.

Although the number of paths may grow exponentially
with the number of nodes

the number of paths represents the number of
different functions in the circuit

Optimizing the length of all paths (length in number of
control steps), means minimizing the number of cycles
In each instruction.

AS-FAST-AS-POSSIBLE
SCHEDULING

« Paths are computed by performing a
depth-first traversal of the acyclic CFG.

« The CFG Is made acyclic by removing
the feedback edges In loops

* Paths are computed starting at a given
first operation

PATHS

Constraints

* An Iimplementation (and thus the schedule) is
usually restricted by so called hardware
constraints.

— 1/O ports can either transmit or receive only one
distinct value per control step

— registers can be written only once per control step
« Constraints explicitly specified often indicate

area and delay characteristics of the desired
Implementation:

— the maximum clock cycle

— the maximum number and type of the functional
units to be used

MODULE ASSIGNMENT

 The module assignment problem arises
when operations can be implemented by
more than one type of functional unit
(FU).

* Module assignment selects the FU to
Implement each operation.

Example

T1 = IN1T + IN2 ooe.e.o
T2 = IN3 e IN4 Ty Selt o et
oo = {3 X
4 =T -7 + s -| |+ / = = -
T1 = T4;
ouT2 :=T1 / 4 FU1 FU2 FU3
(@) (b)
c c e 3 '
1 D o — O ——
DPPOQLOY @O
VNS o
+ 2 - + / = = = + & - + / = = -
(c) d)

PATH-BASED ALLOCATION

 cligue covering (or coloring) based
allocation

 two separate steps:

— a complete, functional initial data path is
generated

— then optimized

Initial Data-Path Allocation

 Allocating functional units
 Allocating registers

* Defining the interconnections
(multiplexers) between functional units and

registers
* Deriving the control signals:
— load enable for registers

— operation selection for functional units
— selection for multiplexers

Data-Path Optimizations

* Optimizations In the data path comprise
register, functional unit and multiplexer
merging

* First a global conflict graph is generated

* The conflict graph Is then colored to
determine the smallest amount of
hardware

Estimation

* For both constraint generation and data
path optimization, it IS necessary to
estimate sizes and delays.

* |t Is extremely difficult at a high level.

* The models used are similar to typical
logic synthesis delay models.

Logic Minimization

* Logic minimization within HIS Is performed
to optimize control signals on the fly

Output generation

« Output language generation Is
straightforward.

* Any language capable of representing
netlists or RT-level hardware can be
chosen.

