Introduction to Database Systems

DATABASE FOR A BAKERY

Kocsis Edina Katalin
JBWPAI

2017. fall

Project supervisor: Gabor Csaba Attila

Introduction

I would like to design a database for a bakery. It is both factory and wholesaler. This
company has more factories and different customers, so it’s mandatory to maintain a proper
database. With this database the factories can easily manage the orders, the storeroom can
properly handle the stock, and the finance department can simply log the orders.

Description

The data tables I’d like to store are the following:

Person - A human being, attributes are general informations like telephone number, e-mail
address, and name. A person in this database is either an employee or a contact.

Employee - It is a subclass of person. An employee of the firm, who works in one of the
factories. An employee has further attributes like position, date of birth, a unique ID, and in
which factory he/she works at.

Contact - It is a subclass of person. Contact person of a supplier, the factories order the
ingredients from the supplier companies.

Customer - It can be either a person or a company, with a contact person in both cases. (For
example, if I'm a party organizer, the customer (buyer) itself is my customer, but i’m the
contact, because I manage the order.)

Factory - the factory itself, with data like location (postal code, country, city, etc.), territory,
and an ID which connects to the employees.

Placement - A customer’s order, includes an ID number, comments, status and so on.
Order details - It is the expansion of Placement. Only the designated factory should care
about it. It has further, detailed informations about the Placement, including the ID of the

ordered products, and the price.

Payment - Every order have a payment data, but it has no identifying data, it’s a weak entity
of Order details. It stores a timestamp, amount, status and so on.

Product - A product of the company, stores data like name, stock, price, and ID of the
ingredients.

Ingredient - Base material the producing needs, has an identifier ID, name, stock and ID of
the possible suppliers.

Supplier - An independent company, who supplies the factories. Stores the order conditions
(minimum amount, payment conditions, etc), bank account number, tax number, possible
comments, ID of the contacts and further informations.

The tables have more attributes than I’ve listed, I hope it’s not a problem that [haven’t
written them down. They are only obvious informations and they don’t connect the entities.

PERSON

date-of-birth

employee-ID @
EMPLOYEE

.

contact-ID

CONTACT

contact-lastname

available-from
available-to

contact-firstname

CUSTOMER <

ordered

bank-account-
number

SUPPLIER

address

postal-code

y

payment-condition

city

address

country

latest-price

\S‘ip"7

postal-code

postal-code

FACTORY

PLACEMENT <

A

produce

» ORDER-DETAILS

INGREDIENT

@

payment-date

PAYMENT

order-number

required-date

PRODUCT

ingredient-1D

\CO\ntai7

prooduct-1D

Relationships and ISAs

R

+ contact and employee ISA with person

» employee has relationship with factory - many to one

» factory has relationship with placement - one to many
customer has relationship with placement - one to many

order details has relationship with product - many to many
» product has relationship with ingredient - many to many

K3
*
&
¢ placement has relationship with order details - one to one
&
K3
% ingredient has relationship with supplier - many to many
.

L)

% supplier has relationship with contact - one to many

Relational model

Entities and attributes

EMPLOYEE (employee-ID, firstname, lastname, e-mail, telephone, date-of-birth, position)
CONTACT (contact-ID, firstname, lastname, e-mail, telephone, available-from, available-to,
comment, tax-number)

CUSTOMER (customer-ID, country, city, postal-code, address, e-mail, telephone,
contact-lastname, contact-firstname, name)

FACTORY (factory-ID, country, city, postal-code, address)

PLACEMENT (order-ID, comment, status, factory-ID, customer-1D)

ORDER-DETALILS (order-number, price, ordered-date, required-date, order-ID)

PRODUCT (product-ID, price, name, stock)

INGREDIENT (ingredient-ID, name, stock)

SUPPLIER (tax-number, bank-account-number, payment-condition, comment,
minimum-amount, country, city, postal-code, address)

PAYMENT (order-number, timestamp, status, amount, payment-date)

Relations
works-at (employee-ID, factoty-ID, since)

includes (order-number, product-ID, amount)

contains (product-ID, ingredient-ID, amount)
supplies (ingredient-1D, tax-number, latest-price)

Queries

Find every order and give their order-number and price, where the price is bigger than
50000!

Add meg minden olyan rendelés szamat és értékeét, ahol a rendelés értéke nagyobb, mint
50000!

I1

price, order number(cprice>50000(0r der — details))

select price, order number
from ORDER DETAILS
where price>50000;

1! PRICE
1 313512 0000018871
2 324509 0000018872
3 232450 000001887
4 29995 000001827

{ ORDER_NUMBER |

3
5

Find every product and give their name, which contains yeast!
Add meg minden élesztot tartalmazo termék nevét!

IT

produc—name

(Product<contains™c,q,.qient-name = yeasr(ingredient))

select product name

from PRODUCT, CONTAINS, INGREDIENT

where PRODUCT.PRODUCT ID CONTAINS.PRODUCT ID and
INGREDIENT.INGREDIENT ID = CONTAINS.INGREDIENT ID

and ingredient name = 'yeast';

{t PRODUCT_NAME
1 doughnut, chocolate filling

2 doughnut, caramel £illing
3 pizza dough lkg, raw
4 pizza dough lkg, prebaked

5 pizza dough lkg, frozen

Find every product and give their name and stock, which name contains the word
“chocolate” and stock is bigger than 0! (List every product with chocolate, which is
currently at stock...)

Adj meg minden olyan terméket, aminek a nevében benne van, hogy “chocolate”, és a
készlete nagyobb, mint 0! (Listdzd ki az osszes csokis terméket, ami van készleten...)

Hproduct*name(Gproduct*name like %ochocolate%' and stock>0 (p?’ OdUCt))

select product name

from product

where product name like '%chocolate%'
and stock >0;

i PRODUCT_NAME

1 chocolate chip cookie 250g

Give the number of orders in every factory, in descending order!
Add meg csokkeno sorrendben, hogy melyik gyarhoz hany megrendelés tartozik!

factory—I D8 count(order—ID) (pl acement)

select factory ID, COUNT (order ID) as number of orders
from PLACEMENT

GROUP BY factory ID,

ORDER BY number of orders desc;

_; FACTORY _ID - MUMBER._OF_ORDERS
1 3000001 5
2 4183001 2

Give the number and name of products waiting to be produced to fulfill every order, in
ascending abc order!

Add meg betiirendben a még legyartando termékek szamat és nevét, ha minden rendelés
telejsitéséhez szeretnénk eleget késziteni!

I1

myname, (—1)xmystock—mysum (Gmystock—mysum<0 (qums(myname, mystock, mysum)(

des~product)))

Qproduct—name, amount—to—produce

II

product—name, stock, sum(amount)(product—name, stock8. sum(amount)(lncz u

select sums.myname as product name,

(-1) * (sums.mystock-sums.mysum) as amount to produce

from(

select product name as myname, stock as mystock, sum(amount)
as mysum

from includes, product

where includes.product ID = product.product ID

group by product name, stock) sums

where sums.mystock - sums.mysum<O;

{t PRODUCT_NAME { AMOUNT_TO_PRODIUCE |
1 chocolate chip cookie 250g 435
2 doughnut, caramel £illing 170
3 doughnut, chocolate filling 150
4 pizza dough lkg, prebaked 50
5 pizza dough lkg, raw 50
6 shortbread 100g a0
7 whole wheat bread 0.5kg 50

8 whole wheat bread lkg 150

Give the name of the products which are at stock, but does not contain any yeast. and
which are not at stock, but contain egg!

Add meg azoknak a termékeknek a nevét, amik vannak készleten, de nem tartalmaznak
élesztot, és nincsenek készleten, de tartalmaznak tojast.

Hproduct—name(cstock>0 (pl’ OduCt)MHproduct—I D (COl’l lains™
Hingredient—lD (Gingredient—name like ’%yeast%'(lngredlen t))) +
Hproductfname (Gstock<0 (pl" oduct)MHproductfl D (COI’ll ains™=

Hingredient*lD (Gingredient*name like '%egg%’(lngredlent)))

select product name

from product

where (

stock>0 and product id not in (

select product id

from contains, ingredient

where ingredient.ingredient ID = contains.ingredient id
and ingredient name like 'Syeast$'))

or (

stock=0 and product id in (

select product id from contains, ingredient

where ingredient.ingredient ID = contains.ingredient id
and ingredient name like '%Segg%')):;

it PRODUCT_NAME

1 chocolate chip cookie 250g
2 shortbread 100g

3 doughnut, chocolate filling
4 doughnut, caramel £illing

Find the name and e-mail address of contacts and customers from abroad!
Keresd meg a kiilfoldi contact-ok és customer-ek nevét és e-mail cimét!

IT (customer)) U

contact—lastname, contact—firstname, email (Gcountry not like %oHungary%

Hlastname, firstname, email (Con tacmntax—number(ccoumry not like %Hungary%f(s upp lier)))

select contact lastname, contact firstname, email
from customer

where country not like '$SHungary%'

union

select lastname, firstname, email

from contact

where tax number in (

select tax number

from supplier

where country not like '%Hungary%'):;

it CONTACT_LASTNAME |4 CONTACT_FIRSTNAME |4} EMAIL
1 Farkas Emoke emoke. farkasfgmail. com
2 Hans Zimmer deutachecustomerfgmail . com

Select employee pairs whose age differs less than 5 years!
Valaszd ki az olyan alkalmazottakat, akik kézott kevesebb, mint 5 év a korkiilonbség.

I1

el.lastname, el firstname, el.date_of birth, e2.lastname, e2.firstname, e2.date_of birth (

Oel .employee—ID<e2.employee—ID and abs(el.date_of birth—e2.date_of birth)/365<5 (Qel (emp l oy 68) *Qe2 (emp L oy ee)))

select el.lastname, el.firstname, el.date of birth,
e2.lastname, e2.firstname, e2.date of birth

FROM employee el,employee e2

where el.employee ID < eZ.employee ID

and abs(el.date of birth-e2.date of birth)/365<5
ORDER BY el.lastname, e2.lastname;

it LASTMAME |{F FIRSTNAME |{} DATE_OF BIRTH |{} LASTNAME 1 |a} FIRSTMAME_1 |{?; DATE_OF_BIRTH_1
1 Czapo Erika 69-APR. -30 ZRngyelits Irene 70-MARC. -15
2 Caurilla Gabor 90-J0L. -28 [Kiss Benjamin 85-DEC. =01

3 Gondos Marton B4-A0G. -17 Hiss Benjamin B85-DEC. -01

Select the customers and their e-mail address, who ordered every kind of doughnut
from the offer!
Valaszd ki azokat az iigyfeleket az e-mail cimiikkel egyiitt, akik a kindlatban szereplé oOsszes

fajta fankbol rendeltek!

(cus lomer NHorder—I D (pl acement D<1l_Iorder—number(

chstomer—name, email

order_details>11,, .. p(includes=<1L,, ... 1n(

Gproduct—name like "%doughnut%" (pFOdqu)))))

- Hproduct—ID(Gproduct—name like "%doughnut%" (plf' OduCt))

select customer name, email

from customer

where customer ID in(

select customer id from placement where order id in(
select order id from order details where order number in (
select order number from includes where product ID in (
select product ID from product where product name like

'$doughnut%"')

group by order number

having count (*) = (select count (*) from product where
product name like 'Sdoughnut%'))));

{ CUSTOMER_NAME |{: EMAIL |

1 Zaebes Ulrik ulrik.Zsebesl2foutlook.com

Select every employee, who works as janitor or storeman!
Valassz ki minden alkalmazottat, aki takaritoként vagy raktarosként dolgozik!

Hlastname, fi irstname(GpOSI'janitor'\/pos='st0reman'(emp ! oy ee))

select lastname, firstname
from employee
where pos = any('janitor', 'storeman'):;

{} LASTNAME |4} FIRSTNAME |

Kias Benjamin

[y

2 Caapo Erika

View

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from
one or more real tables in the database.

create view loyal doughnut lovers as

select customer name, email

from customer

where customer ID in(

select customer id from placement where order id in(
select order id from order details where order number in (
select order number from includes where product ID in (
select product ID from product where product name like
'$doughnut%')

group by order number

having count (*) = (select count(*) from product where

product name like 'Sdoughnut%'))));

Update

The UPDATE statement is used to update existing records in a table.
I’ve created 2 updates, to demonstrate it.

Update the status to ‘fulfilled’ on every order, which required date is 2017. 10. 24.

update placement

set status = 'fulfilled'

where order id in (

select order id

from order details

where required date = TO DATE('2017-10-24"', 'YYYY-MM-DD')
) ;

The price of the egg insanely increases. Add +10 to the price of every product containing
any egg!

update product

set price = price + 10

where product id in (

select product id

from contains

where ingredient id in(
select ingredient id

from ingredient

where ingredient name = 'egg'

));

Delete

The DELETE statement is used to delete existing records in a table.
I’ve deleted the customer called 'Palne Rozsasi' with all her placements (and the other
required dependencies).

delete from includes
where order number in(
select order number
from order details
where order id in(
select order id

from placement

where customer id in(
select customer id
from customer

where customer name = 'Palne Rozsasi')));

delete from payment
where order number in(
select order number
from order details
where order id in(
select order id

from placement

where customer id in(
select customer id
from customer

where customer name = 'Palne Rozsasi')));

delete from order details
where order id in(

select order id

from placement

where customer id in(
select customer id

from customer

where customer name = 'Palne Rozsasi'));

delete from placement
where customer id in(
select customer id
from customer

where customer name = 'Palne Rozsasi');

delete from customer

where customer name = 'Palne Rozsasi';

Normal forms

The normal forms and their criteria:

INF
e Eliminate repeating groups in individual tables.
e C(reate a separate table for each set of related data.
e Identify each set of related data with a primary key

e The relation is in first normal form (1NF).
e cvery non-prime attribute of the relation is dependent on the whole of every
candidate key.

e The relation is in second normal form (2NF).
e Every non-prime attribute of the relation is non-transitively dependent on every key of
the relation.

BCNF
e The relation is in third normal form (3NF).
e Attributes depend only on any super key.

Normalization

I have checked the normal forms of every table. Firs I’ve listed all the dependencies, then I

could decide which normal forms they fulfill. The goal is the BCNF, because there is always

a lossless decomposition in BCNF.

EMPLOYEE (employee-ID, firstname, lastname, e-mail, telephone, date-of-birth, position)

FevpLovee(employee-ID — firstname, employee-ID — lastname, employee-ID — e-mail,

employee-ID — telephone, employee-ID — date-of-birth, employee-ID — position)

INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

CONTACT (contact-ID, firstname, lastname, e-mail, telephone, available-from, available-to,

comment, tax-number)

F contacr(contact-ID — firstname, contact-ID — lastname, contact-ID — e-mail, contact-ID

— telephone, contact-ID — available-from, contact-ID — available-to, contact-ID —

comment, contact-ID — tax-number)

INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

CUSTOMER (customer-ID, country, city, postal-code, address, e-mail, telephone,

contact-lastname, contact-firstname, name)

Fustomer(customer-ID — country, customer-1D — city, customer-ID — postal-code,

customer-ID — address, customer-ID — e-mail, customer-ID — telephone, customer-ID —

contact-lastname, customer-ID — contact-firstname, customer-ID — name)

INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

PRODUCT (product-ID, price, name, stock)

Fpropucr(Product-ID — price, product-ID — name, product-ID — stock)

INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

FACTORY (factory-ID, country, city, postal-code, address)
Fp . crory(factory-ID — country, factory-ID — city, factory-ID — postal-code, factory-ID —

address)
INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

PLACEMENT (order-ID, comment, status, factory-ID, customer-ID)

Fpp acevenr(order-ID — comment, order-ID — status, order-ID — factory-ID, order-ID —

customer-1D)

INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

ORDER-DETAILS (order-number, price, ordered-date, required-date, order-ID)
Forper perans(order-number — price, order-number — ordered-date, order-number —
requiréd-date, order-number — order-ID, order-ID — order-number, order-ID — price,
order-ID — ordered-date, order-ID — required-date)

INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

SUPPLIER (tax-number, bank-account-number, payment-condition, comment,

minimum-amount, country, city, postal-code, address)

FouppLier(tax-number — bank-account-number, tax-number — payment-condition,

tax-number — comment, tax-number — minimum-amount, tax-number — country,

tax-number — city, tax-number — postal-code, tax-number — address)

INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

PAYMENT (order-number, timestamp, status, amount, payment-date)

Fpaymenr(order-number & timestamp — status, order-number & timestamp — amount,

order-number & timestamp — payment-date)

INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled
INGREDIENT (ingredient-ID, name, stock)
Fivrepent(ingredient-ID — name, ingredient-ID — stock)
INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

works-at (employee-ID, factoty-ID, since)

F,oisa(€mployee-ID & factory-ID — since)
INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled
includes (order-number, product-ID, amount)
F. cuges(0rder-number & product-ID — amount)
INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled
contains (product-ID, ingredient-ID, amount)
F. pains(Product-ID & ingredient-ID — amount)
INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled
supplies (ingredient-ID, tax-number, latest-price)
F ppies(ingredient-ID & tax-number — latest-price)
INF Fulfilled
2NF Fulfilled
3NF Fulfilled
BCNF Fulfilled

Every table, so the whole database is in Boyce-Codd normal from.

Trigger

Triggers are stored programs, which are automatically executed or fired when some events
occur. Triggers are, in fact, written to be executed in response to any of the following events
e A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

e A database definition (DDL) statement (CREATE, ALTER, or DROP).
e A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or
SHUTDOWN).
Triggers can be defined on the table, view, schema, or database with which the event is
associated.

I’ve written a trigger for DML purposes. Since Christmas is coming, my company decided to
give a -5% discount from every order with a price bigger than 50000.

This trigger makes sure that the discount gets applied automatically, when a row gets inserted
or updated.

CREATE OR REPLACE TRIGGER christmas discount
BEFORE INSERT OR UPDATE OF price ON ORDER_DETAILS
FOR EACH ROW

BEGIN
IF(:NEW.price > 50000) THEN
:NEW.price := :NEW.price*0.95;
END TIF;

END;

