

Introduction to Database Systems

DATABASE FOR A BAKERY

Kocsis Edina Katalin
JBWPAI

2017. fall

Project supervisor: Gábor Csaba Attila

Introduction

I would like to design a database for a bakery. It is both factory and wholesaler. This
company has more factories and different customers, so it’s mandatory to maintain a proper
database. With this database the factories can easily manage the orders, the storeroom can
properly handle the stock, and the finance department can simply log the orders.

Description

The data tables I’d like to store are the following:

Person - A human being, attributes are general informations like telephone number, e-mail
address, and name. A person in this database is either an employee or a contact.

Employee - It is a subclass of person. An employee of the firm, who works in one of the
factories. An employee has further attributes like position, date of birth, a unique ID, and in
which factory he/she works at.

Contact - It is a subclass of person. Contact person of a supplier, the factories order the
ingredients from the supplier companies.

Customer - It can be either a person or a company, with a contact person in both cases. (For
example, if I’m a party organizer, the customer (buyer) itself is my customer, but i’m the
contact, because I manage the order.)

Factory - the factory itself, with data like location (postal code, country, city, etc.), territory,
and an ID which connects to the employees.

Placement - A customer’s order, includes an ID number, comments, status and so on.

Order details - It is the expansion of Placement. Only the designated factory should care
about it. It has further, detailed informations about the Placement, including the ID of the
ordered products, and the price.

Payment - Every order have a payment data, but it has no identifying data, it’s a weak entity
of Order details. It stores a timestamp, amount, status and so on.

Product - A product of the company, stores data like name, stock, price, and ID of the
ingredients.

Ingredient - Base material the producing needs, has an identifier ID, name, stock and ID of
the possible suppliers.

Supplier - An independent company, who supplies the factories. Stores the order conditions
(minimum amount, payment conditions, etc), bank account number, tax number, possible
comments, ID of the contacts and further informations.

The tables have more attributes than I’ve listed, I hope it’s not a problem that I haven’t
written them down. They are only obvious informations and they don’t connect the entities.

Relationships and ISAs
❖ contact and employee ISA with person
❖ employee has relationship with factory - many to one
❖ factory has relationship with placement - one to many
❖ customer has relationship with placement - one to many
❖ placement has relationship with order details - one to one
❖ order details has relationship with product - many to many
❖ product has relationship with ingredient - many to many
❖ ingredient has relationship with supplier - many to many
❖ supplier has relationship with contact - one to many

Relational model

Entities and attributes
EMPLOYEE (employee-ID, firstname, lastname, e-mail, telephone, date-of-birth, position)
CONTACT (contact-ID, firstname, lastname, e-mail, telephone, available-from, available-to,
comment, tax-number)
CUSTOMER (customer-ID, country, city, postal-code, address, e-mail, telephone,
contact-lastname, contact-firstname, name)
FACTORY (factory-ID, country, city, postal-code, address)
PLACEMENT (order-ID, comment, status, factory-ID, customer-ID)
ORDER-DETAILS (order-number, price, ordered-date, required-date, order-ID)
PRODUCT (product-ID, price, name, stock)
INGREDIENT (ingredient-ID, name, stock)
SUPPLIER (tax-number, bank-account-number, payment-condition, comment,
minimum-amount, country, city, postal-code, address)
PAYMENT (order-number, timestamp, status, amount, payment-date)

Relations
works-at (employee-ID, factoty-ID, since)
includes (order-number, product-ID, amount)
contains (product-ID, ingredient-ID, amount)
supplies (ingredient-ID, tax-number, latest-price)

Queries

Find every order and give their order-number and price, where the price is bigger than
50000!
Add meg minden olyan rendelés számát és értékét, ahol a rendelés értéke nagyobb, mint
50000!

(σ (order etails))Πprice, order number price>50000 − d

select price, order_number

from ORDER_DETAILS

where price>50000;

Find every product and give their name, which contains yeast!
Add meg minden élesztőt tartalmazó termék nevét!

(product⋈contains⋈σ (ingredient))Πproduc−name ingredient−name = yeast′ ′

select product_name

from PRODUCT, CONTAINS, INGREDIENT

where PRODUCT.PRODUCT_ID = CONTAINS.PRODUCT_ID and

INGREDIENT.INGREDIENT_ID = CONTAINS.INGREDIENT_ID

and ingredient_name = 'yeast';

Find every product and give their name and stock, which name contains the word
“chocolate” and stock is bigger than 0! (List every product with chocolate, which is
currently at stock…)
Adj meg minden olyan terméket, aminek a nevében benne van, hogy “chocolate”, és a
készlete nagyobb, mint 0! (Listázd ki az összes csokis terméket, ami van készleten…)

(σ (product))Πproduct−name product−name like %chocolate% and stock>0′ ′

select product_name

from product

where product_name like '%chocolate%'

and stock >0;

Give the number of orders in every factory, in descending order!
Add meg csökkenő sorrendben, hogy melyik gyárhoz hány megrendelés tartozik!

g (placement) factory−ID count(order−ID)

select factory_ID, COUNT (order_ID) as number_of_orders

from PLACEMENT

GROUP BY factory_ID,

ORDER BY number_of_orders desc;

Give the number and name of products waiting to be produced to fulfill every order, in
ascending abc order!
Add meg betűrendben a még legyártandó termékek számát és nevét, ha minden rendelés
telejsítéséhez szeretnénk eleget készíteni!

Π (σ (ϱ (ϱproduct−name, amount−to−produce myname, (−1) mystock−mysum* mystock−mysum<0 sums(myname, mystock, mysum)
(g (includes⋈product))) Πproduct−name, stock, sum(amount) product−name, stock sum(amount)

select sums.myname as product_name,

(-1)*(sums.mystock-sums.mysum) as amount_to_produce

from(

select product_name as myname, stock as mystock, sum(amount)

as mysum

from includes, product

where includes.product_ID = product.product_ID

group by product_name, stock) sums

where sums.mystock - sums.mysum<0;

Give the name of the products which are at stock, but does not contain any yeast. and
which are not at stock, but contain egg!
Add meg azoknak a termékeknek a nevét, amik vannak készleten, de nem tartalmaznak
élesztőt, és nincsenek készleten, de tartalmaznak tojást.

(σ (product)⋈Π (contains⋈ Πproduct−name stock>0 product−ID
+(σ (ingredient))) Πingredient−ID ingredient−name like %yeast%′ ′

(σ (product)⋈Π (contains⋈ Πproduct−name stock<0 product−ID
(σ (ingredient))) Πingredient−ID ingredient−name like %egg%′ ′

select product_name

from product

where(

stock>0 and product_id not in (

select product_id

from contains, ingredient

where ingredient.ingredient_ID = contains.ingredient_id

and ingredient_name like '%yeast%'))

or(

stock=0 and product_id in (

select product_id from contains, ingredient

where ingredient.ingredient_ID = contains.ingredient_id

and ingredient_name like '%egg%'));

Find the name and e-mail address of contacts and customers from abroad!
Keresd meg a külföldi contact-ok és customer-ek nevét és e-mail címét!

(σ (customer))Πcontact−lastname, contact−f irstname, email country not like %Hungary%′ ′ ⋃
(contact⋈Π (σ (supplier)))Πlastname, f irstname, email tax−number country not like %Hungary%′ ′

select contact_lastname, contact_firstname, email

from customer

where country not like '%Hungary%'

union

select lastname, firstname, email

from contact

where tax_number in (

select tax_number

from supplier

where country not like '%Hungary%');

Select employee pairs whose age differs less than 5 years!
Válaszd ki az olyan alkalmazottakat, akik között kevesebb, mint 5 év a korkülönbség.

(Πe1.lastname, e1.f irstname, e1.date_of_birth, e2.lastname, e2.f irstname, e2.date_of_birth
(ϱ (employee)×ϱ (employee))) σe1.employee−ID<e2.employee−ID and abs(e1.date_of_birth−e2.date_of_birth)/365<5 e1 e2

select e1.lastname, e1.firstname, e1.date_of_birth,

e2.lastname, e2.firstname, e2.date_of_birth

FROM employee e1,employee e2

where e1.employee_ID < e2.employee_ID

and abs(e1.date_of_birth-e2.date_of_birth)/365<5

ORDER BY e1.lastname, e2.lastname;

Select the customers and their e-mail address, who ordered every kind of doughnut
from the offer!
Válaszd ki azokat az ügyfeleket az e-mail címükkel együtt, akik a kínálatban szereplő összes
fajta fánkból rendeltek!

(customer⋈Π (placement⋈Π (Πcustomer−name, email order−ID order−number
rder_details⋈Π (includes⋈Π (o product−ID product−ID

(product)))))σproduct−name like "%doughnut%"
(σ (product))÷ Πproduct−ID product−name like "%doughnut%"

select customer_name, email

from customer

where customer_ID in(

select customer_id from placement where order_id in(

select order_id from order_details where order_number in(

select order_number from includes where product_ID in (

select product_ID from product where product_name like

'%doughnut%')

group by order_number

having count(*) = (select count(*) from product where

product_name like '%doughnut%'))));

Select every employee, who works as janitor or storeman!
Válassz ki minden alkalmazottat, aki takarítóként vagy raktárosként dolgozik!

(σ (employee))Πlastname, f irstname pos= janitor ⋁pos= storeman′ ′ ′ ′

select lastname, firstname

from employee

where pos = any('janitor', 'storeman');

View
In SQL, a view is a virtual table based on the result-set of an SQL statement.
A view contains rows and columns, just like a real table. The fields in a view are fields from
one or more real tables in the database.

create view loyal_doughnut_lovers as

select customer_name, email

from customer

where customer_ID in(

select customer_id from placement where order_id in(

select order_id from order_details where order_number in(

select order_number from includes where product_ID in (

select product_ID from product where product_name like

'%doughnut%')

group by order_number

having count(*) = (select count(*) from product where

product_name like '%doughnut%'))));

Update

The UPDATE statement is used to update existing records in a table.
I’ve created 2 updates, to demonstrate it.

Update the status to ‘fulfilled’ on every order, which required date is 2017. 10. 24.

update placement

set status = 'fulfilled'

where order_id in (

select order_id

from order_details

where required_date = TO_DATE('2017-10-24', 'YYYY-MM-DD')

);

The price of the egg insanely increases. Add +10 to the price of every product containing
any egg!
update product

set price = price + 10

where product_id in (

select product_id

from contains

where ingredient_id in(

select ingredient_id

from ingredient

where ingredient_name = 'egg'

));

Delete
The DELETE statement is used to delete existing records in a table.
I’ve deleted the customer called 'Palne Rozsasi' with all her placements (and the other
required dependencies).

delete from includes

where order_number in(

select order_number

from order_details

where order_id in(

select order_id

from placement

where customer_id in(

select customer_id

from customer

where customer_name = 'Palne Rozsasi')));

delete from payment

where order_number in(

select order_number

from order_details

where order_id in(

select order_id

from placement

where customer_id in(

select customer_id

from customer

where customer_name = 'Palne Rozsasi')));

delete from order_details

where order_id in(

select order_id

from placement

where customer_id in(

select customer_id

from customer

where customer_name = 'Palne Rozsasi'));

delete from placement

where customer_id in(

select customer_id

from customer

where customer_name = 'Palne Rozsasi');

delete from customer

where customer_name = 'Palne Rozsasi';

Normal forms

The normal forms and their criteria:
1NF

● Eliminate repeating groups in individual tables.
● Create a separate table for each set of related data.
● Identify each set of related data with a primary key

2NF

● The relation is in first normal form (1NF).
● every non-prime attribute of the relation is dependent on the whole of every

candidate key.

3NF

● The relation is in second normal form (2NF).
● Every non-prime attribute of the relation is non-transitively dependent on every key of

the relation.

BCNF

● The relation is in third normal form (3NF).
● Attributes depend only on any super key.

Normalization

I have checked the normal forms of every table. Firs I’ve listed all the dependencies, then I
could decide which normal forms they fulfill. The goal is the BCNF, because there is always
a lossless decomposition in BCNF.

EMPLOYEE (employee-ID, firstname, lastname, e-mail, telephone, date-of-birth, position)
FEMPLOYEE(employee-ID → firstname, employee-ID → lastname, employee-ID → e-mail,
employee-ID → telephone, employee-ID → date-of-birth, employee-ID → position)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

CONTACT (contact-ID, firstname, lastname, e-mail, telephone, available-from, available-to,
comment, tax-number)
FCONTACT(contact-ID → firstname, contact-ID → lastname, contact-ID → e-mail, contact-ID
→ telephone, contact-ID → available-from, contact-ID → available-to, contact-ID →
comment, contact-ID → tax-number)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

CUSTOMER (customer-ID, country, city, postal-code, address, e-mail, telephone,
contact-lastname, contact-firstname, name)
FCUSTOMER(customer-ID → country, customer-ID → city, customer-ID → postal-code,
customer-ID → address, customer-ID → e-mail, customer-ID → telephone, customer-ID →
contact-lastname, customer-ID → contact-firstname, customer-ID → name)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

PRODUCT (product-ID, price, name, stock)
FPRODUCT(product-ID → price, product-ID → name, product-ID → stock)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

FACTORY (factory-ID, country, city, postal-code, address)
FFACTORY(factory-ID → country, factory-ID → city, factory-ID → postal-code, factory-ID →
address)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

PLACEMENT (order-ID, comment, status, factory-ID, customer-ID)
FPLACEMENT(order-ID → comment, order-ID → status, order-ID → factory-ID, order-ID →
customer-ID)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

ORDER-DETAILS (order-number, price, ordered-date, required-date, order-ID)
FORDER_DETAILS(order-number → price, order-number → ordered-date, order-number →
required-date, order-number → order-ID, order-ID → order-number, order-ID → price,
order-ID → ordered-date, order-ID → required-date)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

SUPPLIER (tax-number, bank-account-number, payment-condition, comment,
minimum-amount, country, city, postal-code, address)
FSUPPLIER(tax-number → bank-account-number, tax-number → payment-condition,
tax-number → comment, tax-number → minimum-amount, tax-number → country,
tax-number → city, tax-number → postal-code, tax-number → address)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

PAYMENT (order-number, timestamp, status, amount, payment-date)
FPAYMENT(order-number & timestamp → status, order-number & timestamp → amount,
order-number & timestamp → payment-date)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

INGREDIENT (ingredient-ID, name, stock)
FINGREDIENT(ingredient-ID → name, ingredient-ID → stock)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

works-at (employee-ID, factoty-ID, since)
Fworks-at(employee-ID & factory-ID → since)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

includes (order-number, product-ID, amount)
Fincludes(order-number & product-ID → amount)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

contains (product-ID, ingredient-ID, amount)
Fcontains(product-ID & ingredient-ID → amount)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

supplies (ingredient-ID, tax-number, latest-price)
Fsupplies(ingredient-ID & tax-number → latest-price)

1NF Fulfilled

2NF Fulfilled

3NF Fulfilled
BCNF Fulfilled

Every table, so the whole database is in Boyce-Codd normal from.

Trigger

Triggers are stored programs, which are automatically executed or fired when some events
occur. Triggers are, in fact, written to be executed in response to any of the following events

● A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)
● A database definition (DDL) statement (CREATE, ALTER, or DROP).
● A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).
Triggers can be defined on the table, view, schema, or database with which the event is
associated.

I’ve written a trigger for DML purposes. Since Christmas is coming, my company decided to
give a -5% discount from every order with a price bigger than 50000.
This trigger makes sure that the discount gets applied automatically, when a row gets inserted
or updated.

CREATE OR REPLACE TRIGGER christmas_discount

BEFORE INSERT OR UPDATE OF price ON ORDER_DETAILS

FOR EACH ROW

BEGIN

IF(:NEW.price > 50000) THEN

 :NEW.price := :NEW.price*0.95;

 END IF;

END;

