
Introduction to Database Systems

Global Flight Information Database

Author:
Csutak Balázs

Consultant:
Gábor Csaba

Semester: 2017/18 fall



Introduction to Database Systems Csutak Balázs

Contents

1 Introduction 2

2 Specification 2

3 Entity-relationship model 2

4 Relational model 4

5 Creating the database using SQL 4

5.1 Preparing the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.2 Defining tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.3 Altering tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6 Populating the database 5

7 Queries 6

7.1 Simple queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7.2 More andvanced queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8 Data manipulation 10

8.1 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8.3 View creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

9 Normalization 10

1



Introduction to Database Systems Csutak Balázs

1 Introduction

The aim of this project is designing a database system for storing global flight information.

As air travel became available and affordable for the great public in the past half century, the number of

flights and airports shows a tremendous growth. While different type of airliners offers various travelling

possibilities, finding the one you really need can be a real pain.

By organizing the mass amount of air traffic related data, this database is primarily intended to give

travel agencies and individuals an overview of the system, and help them in planning their routes and

picking the flight most suitable for their needs. Nevertheless, data related to capacity utilization can also

be useful for airlines to optimize their services.

2 Specification

In order to achieve the goals listed above, the database should store the following information:

Airports: a list of airports available in the database. It is required to store its identification number

(IATA and ICAO code), name, location (country, city).

Flights: date, time, and airport of departure and arrival, length (time), airline, aircraft, passengers.

Airlines: airlines offering transportation services between the airports listed above. We should store its

ID, name, category (discount or premium), aircrafts they use, employees. We must store data for pilots

and for other flight personnel separately. For pilots, we need their rank, number of flight hours, and their

pilot license number. To assure, that they can communicate with passengers, for stewardesses spoken

languages should be stored.

Aircrafts: ID, manufacturer, model, capacity

Ticket offices: We should store where we can book a ticket for the flights.

3 Entity-relationship model

To meet requirements listed above, we created the system design as seen in the following E-R diagramm:

2



Introduction to Database Systems Csutak Balázs

Figure 1: E-R diagram of the database system

3



Introduction to Database Systems Csutak Balázs

4 Relational model

From the E-R model seen in picture 1 we created the following relational model:

Aircraft (ID, manufacturer, model number, capacity)

Airport (ICAO, IATA, name, city)

Flight (ID, airline, departure time, departure airport, arrival time, arrival airport, aircraft id)

Passenger (flight id, seat, name)

Airline (name, country, category, base airport)

Employee (ID, name, address, airline)

Pilot (employee id, license number, rank, flight hours)

Stewardess (employee id, spoken language)

Ticket Office (name, city, telephone number)

Sell tickets (airline id,office name)

As model mainly contains 1-1 and 1-N relationships, transformation is pretty straightforward. Discussion

of nontrivial cases comes below.

Passenger is a weak entity, thus a key of table Flight must be also inserted. This way, foreign key

flight id and discriminator seat together form a primary key.

Table Aircraft contains a composed attribute - this is present in the database as two separate attributes

of the entity.

Airline and Ticket Office have a many-to-many relationship, so separate table must be created for this

purpose. This is called Sell tickets, and its primary key will be composed of primary keys of both sides.

Pilot and Employee, as well as Stewardess and Employee are in an is-a relationship. Having com-

pletely different attributes, these entities are handled in separate table, relation between them being

assured by primary key social security number (ssn). This way, ssn becomes a primary key in all of the

three tables, and at the same time it is a foreign key in Pilot and Stewardess.

5 Creating the database using SQL

SQL (Structured Query Language) is a data definition and database management language, widely used

for creating, using, and managing complex database systems. For the sake of this project, database server

oracle.itk.ppke.hu of the university was used.

5.1 Preparing the database

Before jumping into creating the database, we must be sure that no table with the names in our relational

model is already present. For this reason, first of all we run DROP statements with CASCADE CONSTRAINTS

4



Introduction to Database Systems Csutak Balázs

option to delete everything related to tables with these names.

Drop statements can be found in [1] in executable form.

5.2 Defining tables

To create a new table in SQL, CREATE statement must be used. In the statement, we must specify name

of the columns - that is the name of the attributes, and the type of variables we want to use for storage.

In the examples, we use VARCHAR() arrays for strings and INTEGERs for numbers. In the Flight table,

we use the DATE type as well to store departure and arrival times.

Create statements can be found in [2] in executable format.

5.3 Altering tables

Most database management systems provide a way for modifying table structure after creation. This fea-

ture is absolutely needed in case of changes in specification, but becomes inevitable in adding constraints

to tables referencing each other.In SQL, this can be done by the ALTER TABLE command, by specifying

the table to alter, followed by a valid SQL command.

Alter statements can be found in [3].

5.4 Constraints

To meet database integrity requirements, constraints must be specified. Most common example of a

constraint is the so called foreign key constraint, when key of a table is stored in another table as

well. As purpose of this approach is storing relationships without a separate table, when populating the

database, we must be sure, that the other side of the relation really exists. Moreover, when deleting

referenced entities, what happens to the referencing one must be also handled.

To specify a constraint the CREATE CONSTRAINT statement can be used, by choosing a name for our

constraint and specifying the referencing and the referenced attributes. In this database, only foreign key

constraints are applied.

Constraint creating statements can be found in [3].

6 Populating the database

Now, as database is created and ready for use, we must fill it with the data we want to store and manage.

To add new data to a database, the INSERT statement is used, followed by a table name, and some values

to be inserted in the respective columns. If the insert violates a rule specified in a constraint, operation

is refused by the management system.

Insert statement used in this project can be found in [4].

5



Introduction to Database Systems Csutak Balázs

7 Queries

To test our database, the following queries were checked. SQL implemetation of the queries can be found

in [5].

7.1 Simple queries

Query 1: simple selection

English: List the employees working for airline ’MALEV’!

Magyar: Listázzuk ki a MALÉV alkalmazottakat!

RA: σairline=′MALEV′(Employee)

SQL:

SELECT ssn,

name

FROM employee

WHERE airline = ’MALEV’;

SSN NAME

-------- -----------

001 Peter Istvan

002 Kovacs Janos

003 Kerekes Peter

004 Dombi Botond

005 Nemeth Petra

006 Tanko Karola

Query 2: selection, projection, multiple tables

English: Find the names of co-pilots stored in the database!

Magyar: Keressük meg az összes másodpilóta nevét!

RA: ΠEmployee.name(σPilot.rank=′co-pilot′ and Employee.ssn=Pilot.ssn(Employee× Pilot))

SQL:

SELECT name

FROM Pilot,

Employee

WHERE Pilot.ssn = employee.ssn

AND rank=’co-pilot’;

NAME

------------

Kovacs Janos

Ian Tariceanu

Query 3: selection, projection, comparision, multiple table

English: List the name and the amount of flight hours of the pilots with more than 5000 flight hours.

Magyar: Listázzuk ki az 5000 óránál többet repült pilóták neveit és a repült órák számát!

RA: ΠEmployee.name(σPilot.flight hours>5000 and Employee.ssn=Pilot.ssn(Employee× Pilot))

6



Introduction to Database Systems Csutak Balázs

SQL:

SELECT name

FROM Pilot,

Employee

WHERE Pilot.ssn = employee.ssn

AND flight_hours > 5000;

NAME

--------------

Peter Istvan

Kerekes Peter

Livia Popescu

7.2 More andvanced queries

Query 4: cross product and rename

English: List the social security numbers of captain and co-pilot pairs who can fly an aircraft. Order by

captain’s ssn!

Magyar: Listázzuk ki azokat a kapitány-másodpilóta párokat (a kapitány személyi száma szerint) akik

együtt elvezethetnek egy repülőt!

RA: Πp.ssn,r.ssn(σp.rank=′captain′ and r.rank=′co-pilot′(%p(Pilot)× %r(Pilot)))

SQL:

SELECT p.ssn,

r.ssn

FROM Pilot p,

Pilot r

WHERE p.rank = ’captain’

AND r.rank = ’co-pilot’;

SSN SSN

----------- -----------

001 002

003 002

007 002

001 008

003 008

007 008

Query 5: aggregate functions and group

English: How many employees do airlines have?

Magyar: Melyik légitársaságnak hány alkalmazottja van?

RA: σairline,emp count(airline g count(name)(Employees))

SQL:

SELECT airline.name,

count(*)

FROM airline,

employee

WHERE employee.airline = airline.name

GROUP BY airline.name;

NAME COUNT(*)

------ ----------

MALEV 6

TAROM 5

Query 6: embedded select statetemt

English: Which airlines have employees speaking four languages?

7



Introduction to Database Systems Csutak Balázs

Magyar: Melyik légitársaságnak van négy nyelvet beszélő alkalmazottja?

RA:

fl← Πssn(σspoken language46=null(Stewardess))

ΠairlineσEmployee.ssn=fl.ssn(Employee× fl)

SQL:

SELECT name

FROM airline a

WHERE

( SELECT count(*)

FROM employee,

stewardess

WHERE employee.ssn = stewardess.ssn

AND stewardess.spoken_language4 IS NOT NULL

AND employee.airline = a.name) > 0;

NAME

------

MALEV

Query 7: division

English: Which airlines have flights departing from all of the airports?

Magyar: Mely légitársaságok ind́ıtanak játarot az összes repülőtérről?

RA: Πairline,departure airport(Flight)÷ΠICAO(Airport)

SQL:

SELECT name

FROM airline a

WHERE

(SELECT count(*)

FROM airport) =

(SELECT count(DISTINCT departure_airport)

FROM flight

WHERE flight.airline = a.name);

no rows selected

Query 8: ANY operator

English: To which cities does MALEV or Wizzair has flights?

Magyar: Mely városokba ind́ıt járatot a MALÉV vagy a WizzAir?

RA:

arp← Πarrival airport(σairline=′MALEV′ or airline=′WizzAir′(Flight))

res← Πcity(σicao=arrival airport(Airport× arp))

SQL:

SELECT city

FROM airport

WHERE icao = any

( SELECT arrival_airport

FROM flight

WHERE airline = ’MALEV’

OR airline = ’WizzAir’ );

CITY

----------

Berlin

Budapest

Bukarest

8



Introduction to Database Systems Csutak Balázs

Query 9: ALL operator - finding maximum

English: Which airlines have the maximum number of employees?

Magyar: Mely légitársaság(ok)nak van a legtöbb alkalmazottja?

RA:

epc1← σairline,emp count(airline g count(name)(Employees))

epc2← σairline,emp count(airline g count(name)(Employees))

bad← Πepc1.airline(σepc1.emp count<epc2.emp count(epc1× epc2))

res← Πname(Airline)− bad

SQL:

SELECT name,

country

FROM airline a

WHERE

(SELECT count(*)

FROM employee

WHERE employee.airline = a.name) >=

ALL

(SELECT count(*)

FROM employee

GROUP BY airline);

SSN NAME

-------- -----------

001 Peter Istvan

002 Kovacs Janos

003 Kerekes Peter

004 Dombi Botond

005 Nemeth Petra

006 Tanko Karola

Query 10: UNION operator

English: List the names and addresses of MALEV pilots and TAROM stewardesses!

Magyar: Írjuk ki a MALÉV pilóták és a TAROM stewardessek neveit és lakćımét!

RA:

mp← Πname,address(σairline=′MALEV′ and Employee.ssn=Pilot.ssn(Pilot× Employee))
ts← Πname,address(σairline=′TAROM′ and Employee.ssn=Pilot.ssn(Employee× Stewardess))
res← mp ∪ ts

SQL:

SELECT name,

address

FROM employee

WHERE employee.ssn IN

(SELECT ssn

FROM pilot)

AND employee.airline = ’MALEV’

UNION

SELECT name,

address

FROM employee

WHERE employee.ssn IN

(SELECT ssn

FROM stewardess)

AND employee.airline = ’TAROM’;

NAME ADDRESS

---------- --------------

Iulia Neagra Bucuresti Main street 10

Kerekes Peter Budaors Fulemule u. 8

Kovacs Janos Budapest Sziv u. 15

Peter Istvan Budapest Margareta u. 5

Vlad Nicolae Bucuresti Main street 11

9



Introduction to Database Systems Csutak Balázs

8 Data manipulation

8.1 Delete

Deleting rows from a table can be done using the DELETE statement. As this operation cannot be easily

undone, special care is required when writing the condition after the where statement. Not surprisingly,

rows referenced from other tables cannot be deleted without further modification. As a default setting,

the DBMS restricts erasure of such entries, however we can specify cascading behavior as well.

In our example, simulating a technical difficulty, we want to cancel all flights served by Aircraft with ID

AC1. As a result, we would like all ticket reservations for these flights to be erased as well. To achieve

this behavior, we add on delete cascade option to the foreign key constraint.

Running example of the statement above can be found in [6].

8.2 Update

In a real application, sometimes we must change the value of an attribute in one or multiple entities. For

this operation, the UPDATE statement can be used. In the statement, we specify the table whose rows

we want to manipulate, the new value for the selected attribute, and a condition about which entries we

want to modify.

In our example, simulating unpleasant weather conditions, we delay every flight arriving to Budapest’s

Liszt Ferenc airport. Running example statement can be found in [6].

8.3 View creation

Views are logical representations of the data stored in the database, useful in case we need some data

stored in different parts together. In our example, we create a view from the last query presented above.

SQL code can be found in [6].

9 Normalization

References

[1] drop.sql

users.itk.ppke.hu/~csuba/files/intro dbms/project/drop.sql

[2] create.sql

users.itk.ppke.hu/~csuba/files/intro dbms/project/create.sql

[3] alter.sql

users.itk.ppke.hu/~csuba/files/intro dbms/project/alter.sql

[4] insert.sql

users.itk.ppke.hu/~csuba/files/intro dbms/project/insert.sql

10



Introduction to Database Systems Csutak Balázs

[5] query.sql

users.itk.ppke.hu/~csuba/files/intro dbms/project/query.sql

[6] manip.sql

users.itk.ppke.hu/~csuba/files/intro dbms/project/manip.sql

11


