Problems with solutions:
1. LOSSLESS BCNF DECOMPOSITON:
Consider the following relation R(A,B,C,D,E) with the following functional dependencies is given ( -> denotes a functional dependency):


(1) A  ->  B


(2) C  ->  B


(3) B  ->  E


(4) E  ->  D

a) Assume we decompose R into R1(A,B, C) and R2(B,D,E). Does this decomposition

have the lossless join property --- is it possible to reconstruct R from R1 and R2 using a natural join? Give reasons for your answer! [5]

Yes. Apply the lossless decomposition test :

R1 ņ R2 = {B}

For R2, the FDs are: B -> E and E -> D.  By applying transitivity rule, we get B -> D.  Because B -> E and B-> D, B->BDE (Union), i.e. B is the candidate key of relation R2.  So R1 ņ R2 -> R2.  The decomposition is lossless.

(You can also use attribute closure to explain the answer.)

Or you may use tabular method.

b) What is (are) the candidate key(s) of R? 

AC

c) Is R in BCNF? If not, which functional dependencies are bad (violate BCNF)? 

No.  All FDs are bad.

d) Transform the relational schema into a relational schema that is in BCNF and does

not have any lost dependencies; if this is not possible decompose R into a schema that is in BCNF and has the fewest number of lost functional dependencies. 

One possible solution:






R1 (ABCDE)







    E -> D




R2 (ABCE)



R3 (DE)





B -> E

R4 (ABC)


R5 (BE)



 A -> B

R6 (AC)
R7 (AB)




lost FD C -> B

2. LOSSLESS DEPENDENCY PRESERVING DECOMPOSITON
Find minimal OR canonical cover! If R is not in 3NF, find a lossless, dependency preserving 3NF decomposition. Once you find it, prove losslessness using tabular method. 
So you have calculated already (… If you are sure, see next page. 

If not, please do not read further, TRY again, please.

Need another example? Here is a solved one, see problem 4.:

http://ugweb.cs.ualberta.ca/~c391/W08/exams/solfinal07w.pdf
No you are ready to solve yours, all right.

R=A,B,C,D,E,F,G 

F= { AB->CD, C->EF, G->A, G->F, CE->F } 

Step One, Find the attributes that could be keys for the relation since no primary key is identified (i.e. underlined). 
    G must be in any key since it is not determined by anything (does not appear in the right side of any dependency) 
    B must be in any key for the same  reason. 
    Since GB+ contains all the others (i.e. GB determine everything else by transitivity) GB is a key. 
    Since any key must contain GB, GB is in fact the only minimal key. 

Step Two, Clean up the set of dependencies by removing any that are implied by others (duplicates), or have unecessary attributes in their left hand sides. You can also combine dependencies with the same left hand sides. (In effect we are finding a minimal cover, but by inspection) So F will reduce as follows. 

combine G->F and G->A into G->AF 
combine C->EF and CE->F into C->EF only (E is not necessary in CE->F, because C->F alone) 

So we have F'c = { AB->CD, C->EF, G->AF } 

Step Three. Make a table for each of these dependencies with the left hand of the dependency being a key. 
R1=ABCD, R2=CEF, R3=GAF. 

If none of these tables contains the original key (GB) make a table for the key. So we have as our decompostion: 
R1=ABCD, R2=CEF, R3=GAF, R4=GB. 

Have you got the same? Congratulations!
Now, let us check lossless property.

R1,R2,R3,R4 forms a lossless join, 3nf, dependency preserving decomposition, because:
R  
A
B
C
D
E
F
G

R1
a
a
a
a
b15a
b16a
b17

R2
b21
b22
a
b24
a
a
b27

R3
a
b32
b33
b34
b35
a
a

R4
b41a
a
b33a
b34a
b35a
b36a
a

1.C->EF, 2.G->AF, 3.AB->CD 4.C->EF  And in the tuple R4 we got all a-s!!

Conclusion: the decomposition is lossless.
3. IDENTIFYING NORMAL FORM  

Suppose you are given a relation R with four attributes, A, B, C, D, E, F. For each of the following set of FDs, do the following:

(a) identify the candidate keys for R (this blue one is the help for idntifying best normal form. May be, thet it will be not directly asked int he exam )
(b) identify the best normal form that R satisfies (1NF, 2NF, 3NF, BCNF). Explain.

First set of FDs: 
AB->E, A->F, E->C, ED->B



Second set of FDs: A->B, BC->D, A->C



FIRST set:

CK:
L
 L-R

R 


Not listed

A
B

C





D
E

F

AD must be in each CK. 

{AD}+={A, D, F } so we need to add more attributes in order to find a CK. In these cases we may try in turn the attributes listed in L-R:

{ADE}+={A, D, E, C, B, F }  Check minimality, before decide CK: {AE}+={A, E, F, C} AD checked, your turn: check DE…  conclusion: it is a CK!
{ADB}+={A, D, B,E, C, F}   Check minimality, before decide CK: {AB}+ ={A, B, E, C, F} AD checked, your turn, check DB… conclusion: it is a CK!
BEST normal form:
Prime attributes: A, B, E, D

A->F violates 2nd normal form, since A is a part of a CK, and F nonprime attribute, so R is in only in 1st normal form. 

SECOND SET:
CK:
Second set of FDs: A->B, BC->D, A->C

R (A,B, C, D, E, F)

L

L-R

R

Not listed

A

B,C 

D

E, F



Each CK contains A, E, and F. 

{AEF}+=  {A,E, F, B, C, D}  {AE}+={A, B, C, D, E}    {AF}+={A, B, C, D, F}     {EF}+={E,F}    

NORMAL FORM:
Prime attributes: A, E, F 

 A->B violates 2nd normal form, because B is not prime, and A is a part of a CK.
5. 

a.) Using the second set of FDs, give some elements of F+ illustrating the use of Armstrong axioms, except for the reflexive one. (1 point)

Augmentation: 
A->B
AC ->BC

Transitivity: AC ->BC and BC->D implies  AC->D

(UNION: A->B, A->C imply A->BC, but it was  not asked )

b.) Using the second set of FDs decide whether AC->D is implied by that.

{AC}+={A, C, B, D} since {AC}+ contains D, the functional dependency is a logical consequence of  F
Or:
A->B, BC->D   implies AC->D: it is called pseudotransitivity; proof of pseudotramsitivity:

A->B, 

Augmented by C: AC->BC,  and  BC->D, applying transitivity: AC->D
6. Prove or disprove (give a counterexample) that if  a relation is legal with respect to the functional dependencies A->B and C->D, then it satisfies also AC->BD 
  






Yes, apply augmentation twice, augment the first by C, augment the second by B, then apply transitivity.

OR:

{AC}+={A, C, B, D}. Since BD is a subset  of the set  {AC}+ it is a logical consequence of  AC. 
