- Q1. In the set  $M = \mathbb{N}$ , (the set of natural numbers), it is not possible to define norm.
- Q1. An the set  $M = \mathbb{N}$ , (the set of natural numbers), it is not possible to define metric.
- Q1.  $(V, \|\cdot\|)$  is a normed space. Then  $\|x\| = \|-x\|$  for all  $x \in V$ .
- Q1.  $(V, \|\cdot\|)$  is a normed space. Then  $\|x\| = \|y\| \implies x = y$
- Q1. (M,d) is a metric space,  $x \in M$  is fixed. Then  $d(x,y) = d(x,z) \implies y = z$ .
- Q2. If  $(V, \langle \cdot, \cdot \rangle)$  is complex inner product space, then always  $\exists v, w \in V$  such that  $\langle v, w \rangle = i$ .
- Q2. (M,d) is an arbitrary metric space.  $(x_n) \subset M$  is a convergent sequence,  $\lim_{n \to \infty} x_n = x_0$ . Then  $\exists N$  such that  $x_n = x_0 \ \forall n > N$ .
- Q2. (M,d) is a metric space.  $(x_n) \subset M$  is a convergent sequence. Then  $\exists n, m$  such that  $x_n = x_m$ .
- Q2. (M,d) is a metric space.  $(x_n) \subset M$  is a convergent sequence,  $\lim_{n \to \infty} x_n = x_0$ . Then  $a_n := d(x_n, x_0), n \in \mathbb{N}$  is a convergent sequence in  $\mathbb{R}$ .
- Q2. Let  $(V, \langle \cdot, \cdot \rangle)$  be an inner product space. Then  $\langle v, w \rangle = 0 \iff v = 0$  or w = 0.
  - Q3 Check whether the following formulas define norm in  $\mathbb{R}^2$ , where  $(x_1, x_2) \in \mathbb{R}^2$ ..

$$||(x_1, x_2)||_{\alpha} = ||x_1| + |3x_2||, \qquad ||(x_1, x_2)||_{\beta} = ||x_1| - |3x_2||.$$

If it is a norm, some more questions:

- 1. What is the induced metric? What is the distance between (1,2) and (-2,1)?
- 2. Sketch some elements in  $\mathbb{R}^2$  with unit length.

#### Normed space

Goal: defining length in ar

V a linear space over K. (

The *norm* is a  $\|\cdot\|: V \to \mathbb{R}$ 

1.  $\|v\| \ge 0$ , nonnegative

 $2. \|\mathbf{v}\| = 0 \iff \mathbf{v} =$ 

3.  $\|\lambda \cdot v\| = |\lambda| \cdot \|v\|$ ,  $\forall \lambda$ 

4.  $\|v + w\| \le \|v\| + \|w\|$ 

Then  $(V, \|\cdot\|)$  is a normed

$$||\chi||_{3}$$
 -> not a norm

 $||\chi||_{3}$  -> not a norm

 $||\chi||_{3}$  =  $|3-3|=0$  -> 2.not

$$3. \|x_{2} + x_{1} - |x_{1}| + |x_{2}| + |x_{$$

Q3 Check whether the following formulas define norm in  $\mathbb{R}^2$ , where  $(x_1, x_2) \in \mathbb{R}^2$ ..

$$\|(x_1, x_2)\|_c = \left| |3x_1| + |2x_2| \right|, \quad \|(x_1, x_2)\|_d = \left| |3x_1| - |\frac{2}{1}x_2| \right|.$$

The parameters of the contraction o

If it is a norm, some more questions:

- 1. What is the induced metric? What is the distance between (-1,2) and (-2,-1)?
- 2. Sketch some elements in  $\mathbb{R}^2$  with unit length.
- Q3 Check whether the following formulas define norm in  $\mathbb{R}^2$ , where  $(x_1, x_2) \in \mathbb{R}^2$ ...

$$\|(x_1, x_2)\|_a = \left||2x_1| - |x_2|\right|, \qquad \|(x_1, x_2)\|_b = \left||2x_1| + |x_2|\right|.$$
 If it is a norm, some more questions:

- 1. What is the induced metric? What is the distance between (-1,3) and (-2,1)?
- 2. Sketch some elements in  $\mathbb{R}^2$  with unit length.

Questions: Is it true or not?

- Q1. Every inner product induces a metric.
- Q1. Let us consider  $x = (x_1, x_2, \dots, x_n, \dots)$ . If there are only finite number of non-zero coordinates, then  $x \in \ell^p$  for all  $p \ge 1$ .
- Q1. Let  $f:[0,1]\to\mathbb{R}$  be a continuous function. Then  $||f||_{\infty}$  can not be the same as  $||f||_2$ .
- Q1. Let  $f:[0,1]\to\mathbb{R}$  be a continuous function. Then  $||f||_{\infty}$  might be the same as  $||f||_{2}$ .
- Q1. Let  $(V, \langle \cdot, \cdot \rangle)$  be an inner product space. Then

$$\langle v, w \rangle = 0 \iff \langle v + w, v + w \rangle = 0.$$

Questions: Is it true or not?

- Q2. If  $x \in \ell^1$  and  $y \in \ell^2$ , then  $x + y \in \ell^1$  for sure. Q2. If  $x \in \ell^2$  and  $y \in \ell^\infty$ , then  $x + y \in \ell^2$  for sure.
- Q2. Let  $x = (1, x_2, ..., x_n, ...)$  with  $x_n > x_{n-1}$  for all n > 1. Then  $x_n \notin \ell^p$  for any finite p.
- Q2.  $(V, \|\cdot\|)$  is a normed space. If  $\|x\|^2 + \|y\|^2 = \|x + y\|^2$  for all  $x, y \in V$ , then this norm can be derived from an inner product
- Q2. Let  $x \in \ell^1$ . Assume  $||x||_{\infty} \le 1$ . Then  $||x||_1 \le 1$  too.

Q3 1. What is the smallest p number s.t.  $x, y \in \ell^p$ :

$$x = (1, 1, \dots, 1, \dots), \qquad y = (-1, 1, \dots, (-1)^n, \dots)$$

What is their distance in this  $\ell^p$  space?

2. Let us consider the function space  $C[0, \pi]$ . Why do the following functions belong to this space?

$$f(x) = \sin(2x), \qquad g(x) = x^2.$$

Compute  $||f||_{\infty}$  and  $||g||_{2}$ .

- 1) What is the smallest p s.t.  $x_1y \in L^{\uparrow}$   $x = (1,1,....,1) \quad y = (-1,1,...,-1,1)$
- 1) Up regene ZIMP=+00 => xyflp
- 1 p=toco
- 1 x-y 1 = 2
- 2) C[0,T]
  - G f(x) = Sin(Zx)  $g(x) = x^2$  Cont. functions
  - 1)  $\|S_{\text{in}}(2x)\|_{\infty} = 1$ 1)  $\|g\|_{2} = \left(\int_{0}^{\pi} x^{4} dx\right)^{\frac{1}{2}} = \left(\frac{\pi^{5}}{5}\right)^{\frac{1}{2}} = \frac{\pi^{5/2}}{\sqrt{5^{2}} \log x}$

Q3 1. What is the smallest p number, s.t.  $x, y \in \ell^p$ : smallest  $p: \infty$ 

$$x = (2, -2, \dots, 2(-1)^{n-1}, \dots), \qquad y = (1, 1, \dots 1, \dots)$$

What is their distance in this  $\ell^p$  space? distance: 3

2. Let us consider the function space C[-1, 1]. Why do the following functions belong to this space?

$$f(x) = \frac{1}{(1+x^2)}, \qquad g(x) = 1+x^2.$$
 and  $\langle f, g \rangle$ .

Compute  $||g||_{\infty}$  and  $\langle f, g \rangle$ .

Q3 1. What is the smallest p number, s.t.  $x, y \in \ell^p$ : smallest p: 1

$$x = (1, 1, \dots, 1, 0, \dots),$$
  $y = (-1, -1, \dots - 1, 0, \dots),$ 

where after the first 100 elements all coordinates are 0. What is their distance in this  $\ell^p$  space? distance: 200

2. Let us consider the function space C[0, 1]. Why do the following functions belong to this space?

$$f(x) = \sin(\pi x), \qquad g(x) = (x+1)^2.$$

Compute  $||f||_{\infty}$  and  $||g||_{2}$ .

#### Questions: Is it true or not?

- Q1. Union of finite number of compact sets is always compact.
- Q1. The intersection of two compact sets is always compact.
- Q1. A set with countable number of elements always compact.
- Q1. The complement of a compact set is open.
- Q1. The complement of an open set is compact.

### Questions: Is it true or not?

- Q2. The dimension of  $\in \ell^p$  is p for all  $p \ge 1$ .
- Q2. An open set might be compact.
- Q2. In an infinite dimensional  $(V, \|\cdot\|)$  space there is no compact set.
- Q2. If  $1 \le p < q < \infty$ , akkor  $\dim(\ell^p) < \dim(\ell^q)$ .
- Q2. In  $(\mathbb{R}^2, \|\cdot\|_2)$  the set  $E = \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \end{bmatrix}$  is compact true

Q3 1. (V, ||·||) is a normed space. x<sub>0</sub> ∈ V is a fixed element, x<sub>0</sub> ≠ 0. Is the following set open or closed \(\sum\_{none}\) none? Verify your answer.

$$H = \{x : x = \lambda x_0, \lambda > 0\},\$$

2. Show, that in  $\ell^1$  the following subset is not compact:

$$F = \{x : x = (x_1, x_2, \dots, x_{10}, 0, \dots), \text{ with } x_n = 0 \text{ for } n > 10\}.$$

1. closed?

let 
$$j = 0$$
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 
 $\exists is a limit point, he for  $\exists \varepsilon > 0$ 

let  $z = \varepsilon$ 

let$$$$$$$$$$$$$$ 

2, not compact, brance it is not bounded

$$\begin{array}{c}
X_{0} = [0,0,0...] \\
A(x,x_{0}) = \sum_{i=1}^{6} |X_{i}| & \text{it is not bounded} \\
A(x,x_{0}) = B \in \mathbb{R} \quad Q_{1}^{2}, \quad X = [B,1,0,0,...]
\end{array}$$

$$A(x,x_{0}) = B+1 \rightarrow B$$

is a normed space.  $x_0 \in V$  is a fixed element,  $x_0 \neq 0$ . Is the ig set open or closed or none? Verify your answer.

$$E = \{y : y = \lambda x_0, \lambda \in \mathbb{R}\},\$$

Show, that in ℓ<sup>2</sup> the following subset is not compact:

$$F = \{x \ : \ \|x\|_2 \le 1\}.$$

(Hint: Use the sequence  $e^{(n)} := (0, \dots, 0, \overset{\circ}{1}, 0, 0, \dots), n = 1, 2, \dots)$ 

1. closed /



open 2 if 
$$V=\mathbb{R}^n$$
 / by the  $E=(-\infty, \infty)=\mathbb{R}^n$ 

Q3 1. (M, d) is a metric space.  $x_0 \in M$  is a fixed element. Is the following set open or closed or none? Verify your answer.

$$G = \{y : 0 < d(x_0, y) < 1\}.$$

2. Show, that in  $\ell^{\infty}$  the following subset is not compact:

$$E = \{x : ||x|| = 1\}.$$

(*Hint*: Use the sequence  $e^{(n)} := (0, \dots, 0, \overset{n}{1}, 0, 0, \dots), n = 1, 2, \dots)$ 

2, not compact

Let is choose  $e^{(n)} = (0, ..., 0, 1, 0, 0, ...)$   $e^{n} \subset E$ let  $||e^{n}|| = 1$ lat  $||e^{n}|| = 1$ for any  $n \neq n$ 

#### 2 points.

- Q1. In a (V, ||·||) normed space every Cauchy sequence is convergent.
  - e is no Cauchy
- Q1. Assume, that (M, d) metric space is not complete. Then there is no Cauchy sequence in M that is convergent.
- Q1. If a (V, ||·||) normed space is complete, then the induced (M, d) metric space is also complete.
- Q1. In a complete (V, ||-||) normed space there is no compact set.
- Q1. In a complete  $(V, \|\cdot\|)$  normed space every bounded set is compact.

### 2 points.

- Q2. The Lebesgue measure of a bounded set  $E \subset \mathbb{R}$  can be  $\infty$ .
- $\lambda$
- Q2. The Lebesgue measure of a set  $E \subset \mathbb{R}$  can be -1.
- Q2. The Lebesgue measure of a finite intervall might be greater than its length.
- Q2. The set of all irrational numbers  $\mathbb{Q}^* \subset \mathbb{R}$  is Lebesgue measurable.
- Q2. The Lebesgue measure of the set set of all natural numbers  $\mathbb{N} \subset \mathbb{R}$  is  $\infty$ .

### Q3 Define

$$H = \{x = \frac{p}{q\sqrt{3}} : p < q, p, q \in \mathbb{N}\} \subset \mathbb{R}.$$

- 1. Is it measurable? If yes, compute its measure.
- 2. Is it an open set?

$$0 \leq m(H) = m \left( \bigcup_{P \in I} \bigcup_{q \in I} X_{P, q} \right) \leq \sum_{r=1}^{\infty} \sum_{j=1}^{\infty} m(X_{r, j}) = \sum_{r=1}^{\infty} \sum_{q \in I} 0 = 0$$

$$m(H) = 0$$

2 It is not open 
$$\mathbb{R}$$

Let  $X_0 = \frac{P}{9\sqrt{3}}$ , for  $\forall E > 0$ ,  $\forall L_{1} \in \mathbb{N}$   $X = (\frac{P}{9\sqrt{3}} - E, \frac{P}{9\sqrt{3}} + E)$ 

will contain  $y \in X$ , but  $y \notin H$  (e.g.  $y = \frac{P+E}{9\sqrt{3}}$  if  $E \in \mathbb{Q}^*$ 

inner point is an

or  $\theta = \frac{P+\frac{\pi}{2}}{9\sqrt{3}}$  if  $E \in \mathbb{Q}$ )

### Q3 Define

$$H = \{x = \frac{q}{2p} : p > q, p, q \in \mathbb{N}\} \subset \mathbb{R}.$$

- 1. Is it measurable? If yes, compute its measure. Yes, m(H) = 0
- 2. Is it an open set? No

# Q3 Defi

$$H = \{ x = \frac{r+1}{\sqrt{2}p} \ : \quad r < p, \ r,p \in \mathbb{N} \} \subset \mathbb{R}.$$

- 1. Is it measurable? If yes, compute its measure. Yes, m(H) = 0
- 2. Is it an open set? No

#### Questions: Is it true or not?

- Q1. If f: [0, 1] → R is a continuous function with one discontinuity, then it is not measurable.
- Q1. If  $f:[0,1] \to \mathbb{R}$  is a continuous function, then it is measurable.
- Q1. If  $f:[0,1] \to \mathbb{R}$  is a measurable function, then it is continuous.
- Q1. If f: [0,1] → ℝ is a measurable function, then |f| is also measurable.
- Q2. If f : [0,1] → ℝ is a bounded measurable function with countable many of discontinuities, then it is Lebesgue integrable.
- Q2. If f: [0,1] → R is a continuous function, then the Lebesgue integral and the Riemann integral is the same.
- Q2. If  $f:[0,1]\to\mathbb{R}$  is a continuous function, then it is Lebesgue integrable

M. Check the following property of characteristic functions:

$$\chi_A \cdot \chi_B = \chi_{A \cap B} \quad \forall A, B \subset \mathbb{R}$$
.

M. Check the following property of characteristic functions:

$$\chi_A + \chi_B - \chi_{AOB} = \chi_{AOB}, \quad \forall A, B \subset \mathbb{R}$$
.

M. Check the following property of characteristic functions:

(c) 
$$|\chi_A - \chi_B| = \chi_{A \wedge B}$$
,  $\forall A, B \in \mathbb{R}$ .

### Lebesgue integral

L. Define a function  $f: [-1, 1] \to \mathbb{R}$  as

$$f(x) = \begin{cases} x^2 & \text{if } x = \frac{p}{q}, \\ 1 & \text{otherwise.} \end{cases} \quad p, q \in \mathbb{Z}, \quad \longrightarrow \quad \boldsymbol{\lambda} \in \mathbf{Q}$$

Is this function measurable? Why? If yes,  $\int_{[-1,1]} f dm = ?$ 

$$a \ge 1 \quad m(x; f(x) \le a) = m([-1,1]) = 2 /$$
 $a \ge 1 \quad m(x; f(x) \le a) \le m(0) = 0 /$ 
 $f(x) = 0$ 

It is neasurable 
$$f(x) = 1 \text{ a.e., b.c. } m(x; f(x) \neq 1) \leq m(Q) = 0$$

$$\int_{[-1,1]}^{\int_{[-1,1]}^{f(x) \cdot dx}} f(x) \cdot dx = \int_{[-1,1]}^{\int_{[-1,1]}^{f(x) \cdot dx}} f(x) \cdot dx = \left[x\right]_{-1}^{1} = 1 + 1 = 2$$

Q1. The dimension of  $\mathcal{L}^2[0,1]$  is 2.



Q1. 
$$\mathcal{L}^{3}(0,1) \subset \mathcal{L}^{1}(0,1)$$



Q1. 
$$\mathcal{L}^{1}(0,1) \subset \mathcal{L}^{3}(0,1)$$



Q1. 
$$L^1(0,1) \subset L^{\infty}(0,1)$$



Q1. 
$$\mathcal{L}^{\infty}(0, 1) \subset \mathcal{L}^{3}(0, 1)$$



Q2. If  $f:[0,1] \to \mathbb{R}$  is continuous with one discontinuity of first type, then  $f \in \mathcal{L}^{\infty}[0,1]$ .

Q2. If  $f:[0,1] \to \mathbb{R}$  is continuous function, then  $f \in \mathcal{L}^p[0,1]$  for all  $p \ge 1$ .

Q2. If  $f:[0,1]\to\mathbb{R}$  is not continuous function, then  $f\not\in\mathcal{L}^\infty[0,1]$  for sure.

Q2. If  $f:[0,1] \to \mathbb{R}$  is continuous, then it is essentially bounded.

Q2. If  $f:[0,1]\to\mathbb{R}$  is essentially bounded, then it is continuous.

Lp. Let 
$$f(x) = \frac{1}{x}$$
. Which is true?

1. 
$$f \in \mathcal{L}^2[1, 2]$$
,

2. 
$$f \in \mathcal{L}^2(0,1)$$
,

Compute the norm, when it is possible. Justify your answer!



Lp. Let  $f(x) = e^{-x}$ . Which is true?

1. 
$$f \in L^2(-\infty, 0)$$
, 2.  $f \in L^1(0, \infty)$ ,

Compute the norm, when it is possible. Justify your answer!

1, 
$$\int (e^{-x})^2 dx = \int e^{-2x} dx = \left[-\frac{1}{2}e^{-2x}\right]^2 = 1 - (\infty) = \infty$$

$$\int e^{-x} dx = \int e^{-x} dx = \left[-e^{-x}\right]^\infty = 0 - (-1) = 1$$

$$\int e^{-x} dx = \int e^{-x} dx = 1$$

$$\int e^{-x} dx = \int e^{-x} dx = 1$$

#### L+ Define a function as

$$f: [0,1] \rightarrow \mathbb{R}$$
,  $f(x) := \begin{cases} \frac{1}{x} & \text{if } x \in C, x \neq 0 \\ x & \text{if } x \notin C, \text{ or } x = 0 \end{cases}$ 

where C is the Cantor set. Is it true, that  $f \in \mathcal{L}^{\infty}$ ? If yes, compute its norm.

$$f(x) = X$$
, o. e., be.  $m(x: f(x) \neq x) = m(C) = 0$ 
 $X = iS \quad cont. func.$ , bounded over  $[0,1]$ ,  $Sup([x])_{[0,1]} = 1$ 
 $f(x) = iS \quad essen = i \text{ all } bounded$ 

The essential  $Supx$  of  $f(x)$ :

 $\|f(x)\|_{\infty} = sup(|X|)_{[0,1]} = 1$ 

Questions: Is it true or not?

Q1. Let  $X=\mathbb{N},\ \mathcal{R}=2^{\mathbb{N}},$  and let  $\mu$  be a counting measure. In the measure space  $(\mathbb{N},\mathcal{R},\mu)$  we have



Q1. Let  $X=\mathbb{N},\ \mathcal{R}=2^{\mathbb{N}}$ , and let  $\mu$  be a counting measure. The dimension of  $\mathcal{L}^1(\mathbb{N},\mathcal{R},\mu)$  is 1.



- Q1.  $\mathcal{L}^2(\mathbb{N}, \mathcal{R}, \mu) \subseteq \ell^2$ , where  $\mathcal{R} = 2^{\mathbb{N}}$  and  $\mu$  is the counting measure.
- Q1.  $\mathcal{L}^1(\mathbb{N}, \mathcal{R}, \mu)$  is complete, where  $\mathcal{R} = 2^{\mathbb{N}}$  and  $\mu$  is the counting measure .
- Q2. If  $f_1, f_2, ... f_n ... \in \mathcal{L}^2$  are independent functions, then they may not be pairwise orthogonal.



- Q2.  $(f_n(x) = x^n, n \in \mathbb{N}_0)$  is complete in  $\mathcal{L}^2[-1, 12]$ .
- Q2.  $(f_n(x) = x^n, n \in \mathbb{N}_0)$  is orthogonal in  $\mathcal{L}^2[-1, 12]$ .

#### General $L^p$ spaces in a measure space.

M Consider the measure space  $(\mathbb{N}, \mathcal{R} = 2^{\mathbb{N}}, \mu)$ , with  $\mu$  is the counting measure. Let us define a function  $f: \mathbb{N} \to \mathbb{R}, f(x) = x^2$ .

Compute the integral of f with respect to the measure  $\mu$  over the sets

 $E = \{1, 2, 4\} \text{ and } R = \{n^2 \ : \ n \in \mathbb{N}\}:$ 

$$\int_E f \, d\mu = ? \qquad \int_R f \, d\mu = ?$$

$$\int_{E} f d\mu = \int_{A} x^{2} dx = \int_{A} A^{2} = 1^{2} + 2^{2} + 4^{2} = 21$$

$$\int_{A} f d\mu = \int_{A} x^{2} dx = \int_{A} m^{2} = \int_{A} (n^{2})^{2} = \int_{A} n^{2} = \infty$$

$$\int_{A} f d\mu = \int_{A} x^{2} dx = \int_{A} m^{2} = \int_{A} (n^{2})^{2} = \int_{A} n^{2} = \infty$$

M Consider the measure space  $(N, R = 2^N, \mu)$ , with  $\mu$  is the counting measure. Let us define a function  $f : \mathbb{N} \to \mathbb{R}$ ,  $f(x) = \frac{1}{x}$ 

Compute the integral of f with respect to the measure  $\mu$  over the sets

$$E=\{1,3\} \text{ and } R=\{2^n \ : \ n\in \mathbb{N}\}:$$
 
$$\int_E f\,d\mu=? \int_R f\,d\mu=?$$
 M Consider the measure space  $(\mathbb{N},\mathcal{R}=2^\mathbb{N},\mu)$ , with  $\mu$  is the counting measure.

Let us define a function  $f : \mathbb{N} \to \mathbb{R}$ ,  $f(x) = 2^{-x}$ .

Compute the integral of f with respect to the measure  $\mu$  over the sets

 $E = \{2, 3, 4\}$  and  $R = \{2n : n \in \mathbb{N}\}$ :

$$\int_{E} f d\mu = ? \int_{R} f d\mu = ? \int_{E} 2^{-2s} \int_{E} (2^{-2s})^{\frac{s}{2}} \int_{E} (2^{-2s})^{\frac{s}{2}$$

### Extension of some basic notions of $\mathbb{R}^n$ into the $\mathcal{L}^2$ Lebesgue space.

B. Check whether the following functions are orthogonal in  $\mathcal{L}^2[-1, 1]$ :

$$f_1(x) = \sin(\pi x), \quad f_2(x) = \sin(3\pi x), \quad f_3(x) = 3\sin(2\pi x) + 1.$$

Reminder:

$$\sin(nx)\sin(mx) = \frac{\cos((n-m)x) - \cos((n+m)x)}{2}$$



B. Check whether the following functions are orthogonal in  $\mathcal{L}^2[0, \pi]$ :

$$f_1(x) = x$$
,  $f_2(x) = 2x^2$ ,  $f_3(x) = 1$ .

Are they linearly independent? Verify your answer.

$$f_{1} \perp f_{2}^{2}$$

$$\int x \cdot z \cdot x^{2} \cdot dx = \left[\frac{z \cdot x}{4}\right]_{0}^{\infty} = \frac{\pi}{2} - not \text{ orth.}$$

$$f_{1} \perp f_{2} \times x \qquad f_{2} \perp f_{3} \times x$$

$$lin. indep!$$

$$a_{1} \cdot f_{1}(x) + b_{2} \cdot f_{2}(x) + c_{3} \cdot f_{3}(x) = 0$$

$$2b \cdot x^{2} + ax + c = 0 \quad \text{orth.} \quad a = b = c = 0,$$

$$2b \cdot x^{2} + ax + c = 0 \quad \text{orth.} \quad a = b = c = 0,$$

$$athermise \quad pohnon \neq 0 \implies bin. indep.$$

B. Check whether the following functions are orthogonal in  $L^2[-1, 1]$ :

$$f_1(x) = 1$$
,  $f_2(x) = 5x^3 - 3x$ ,  $f_3(x) = x$ .

Are they linearly independent? Verify your answer.

$$\begin{cases} \frac{1}{4} + \frac{1}{4} \\ \frac{1}{4} + \frac{1}{4} \\ \frac{$$

#### Questions 1: Is it true or not?

- Q1. The resulting functions of G-S orthogonalization of  $f_1, f_2, ... f_n ... \in L^2$  might be the original same functions.
- Q1. The G-S orthogonalization can be applied for finite number of functions too.
- Q1. The purpose of the G-S orthogonalization in  $\mathcal{L}^{2}(X)$  is to find linearly independent functions



#### Questions 2: Is it true or not?

- Q2. The Hermite polynomials are pairwise independent in  $\mathcal{L}^2[-1,1]$  too.
- Q2. The Hermite polynomial of degree k + n is the sum of the Hermite polynomials of degree k and n.
- Q2. The Hermite polynomials are pairwise orthogonal in  $\mathcal{L}^2(\mathbb{R})$ .





- G.+ Let us consider the function space  $\mathcal{L}^2[-1, 0]$ .
  - 1. Normalize f(x) = x. Denote the result by  $f_0$ .  $f_0(x) = ?$
  - 2. Compute the orthogonal projection of  $g(x) = x^2$  onto  $f_0$ .  $\hat{g}(x) = ?$

$$f_{0} = \frac{f(x)}{\|f(x)\|^{2}}$$

$$\|f(x)\| = \left[\int_{-1}^{0} x \cdot dx\right] = \left[\left[\frac{x^{2}}{3}\right]_{-1}^{0} = \left[0 - \frac{1}{3}\right] = \frac{1}{3}$$

$$f_{0}(x) = \sqrt{3} \cdot x$$

$$\langle f_{Q}(x), g(x) \rangle = \int_{-1}^{0} \sqrt{3} \cdot x \cdot x^{2} \cdot dx = \left[ \frac{3}{4} \times^{4} \right]_{-1}^{0} = 0 - \frac{3}{4} = \frac{\sqrt{3}}{4}$$

$$\hat{g}(x) = \frac{\sqrt{3}}{4} \cdot \sqrt{3} \cdot x = \frac{3}{4}$$

- G Let us consider the function space  $L^2[0, 1]$ .
  - Normalize c(x) = x. Denote the result by c<sub>0</sub>. c<sub>0</sub>(x) ≃?
  - Compare the orthogonal projection of f(x) = √x onto c<sub>0</sub>. f(x) =?
- G. Let us consider the function space  $C^2[-1, 1]$ .
  - Normalize f(x) = x. Denote the result by f<sub>0</sub>. f<sub>0</sub>(x) =!
  - 2. Compute the orthogonal projection of  $g(x)=x^2$  onto  $f_0$ :  $\hat{g}(x)=7$

O. Let us consider L<sub>θ</sub><sup>2</sup>(R) with the weight function ρ(x) = e<sup>-x<sup>2</sup></sup>. In this space there are the Hermite polynomials. The first 3 of them are the following (without normalization):

$$H_0(x) = 1,$$
  $H_1(x) = 2x,$   $H_2(x) = 4x^2 - 2.$ 

How would you compute  $||H_2||$  and how would you check  $H_0 \perp H_1$ ? (You do not have to finish the computations here).

O. Let us consider L<sup>2</sup><sub>ρ</sub>(R) with the weight function ρ(x) = e<sup>-x<sup>2</sup></sup>. In this space there are the Hermite polynomials. The first 3 of them are the following (without normalization):

$$H_0(x) = 1,$$
  $H_1(x) = 2x,$   $H_2(x) = 4x^2 - 2.$ 

How would you compute  $||H_1||$  and how would you check  $H_0 \perp H_2$ ? (You do not have to finish the computations here).

O. Let us consider L<sup>2</sup><sub>θ</sub>(R) with the weight function ρ(x) = e<sup>-x<sup>2</sup></sup>. In this space there are the Hermite polynomials. The first 3 of them are the following (without normalization):

$$H_0(x) = 1$$
,  $H_1(x) = 2x$ ,  $H_2(x) = 4x^2 - 2$ .

How would you compute  $||H_0||$  and how would you check  $H_1 \perp H_2$ ? (You do not have to finish the computations here).

Q1. If (φ<sub>n</sub>) ⊂ H is a complete ON system, then the Fourier coefficients of an f ∈ H with respect to (φ<sub>n</sub>) are always different.



Q1. If  $(\varphi_n) \subset H$  is an ON system, then the Fourier series of an  $f \in H$  with respect to  $(\varphi_n)$  always gives back f.



Q1. If  $(\varphi_n) \subset H$  is a non-complete ON system, then the Fourier series with respect to  $(\varphi_n)$  of an  $f \in H$  sometimes gives back f.



Q1. The completeness of an  $(e_n) \subset H$  ON system is equivalent to the fact, that there is not  $x \in H$  such that  $x \perp e_n$  for all n. questionable...



Q1. In  $\mathcal{L}^2(\mathbb{N}, \mathcal{R} = 2^{\mathbb{N}}, \mu)$  there in not any complete ON system.



Q1. In a H Hilbert space the elements of a complete ON system are linearly independent.



Q1. In a H Hilbert space some elements of a complete ON system might be linearly dependent. Q2. In  $\mathcal{L}^2_{\varrho}(\mathbb{R})$ , with weight function  $\varrho(x) = e^{-x^2}$ , Fourier coefficients can be computed with respect to the Legendre polynomials.



- Q2. In  $\mathcal{L}^2[-1, 1]$  Fourier coefficients can be computed with respect to the Legendre polynomials.
- Q2. In  $\mathcal{L}^2[-1,1]$  the sum of square of the Fourier coefficients of an  $f \in \mathcal{L}^2[-1,1]$ with respect to any complete ON system equals  $\int_{-1}^{1} |f| dm$ .



Q2. In  $\mathcal{L}^2[-1,1]$  the sum of square of Fourier coefficients of an  $f \in \mathcal{L}^2[-1,1]$  with respect to any complete ON system equals  $\int_{-1}^{1} f^2 dm$ .



Q2. In  $\mathcal{L}^2[-1, 1]$  the sum of square of Fourier coefficients of an  $f \in \mathcal{L}^2[-1, 1]$  with respect to any complete ON system equals  $\left(\int_{-1}^1 f^2 dm\right)^{1/2}$ .



Q2.  $\mathcal{L}^2_{\varrho}(\mathbb{R})$ , with weight function  $\varrho(x)=e^{-x^2}$ , can be identified with  $\ell^2$ .



Q2.  $\mathcal{L}^2_{\rho}(\mathbb{R})$ , with weight function  $\rho(x) = e^{-x^2}$  and  $\mathcal{L}^2[-1, 1]$  can be identified.



H. Write the formula for the Haar function  $H_{4,1}$ . Sketch the graph of the function.



 $\angle H_{4,1} | H_{1,1} > = \int_{0}^{\infty} H_{4,1} \cdot H_{1,1} \cdot A_{1,2}$ 



H. Write the formula for the Haar function  $H_{3,2}$ . Sketch the graph of the function.



- H. Write the formula for the Haar function H<sub>4,1</sub>. Sketch the graph of the function. Show, that H<sub>4,1</sub>⊥H<sub>1,1</sub>.
- H. Write the formula for the Haar function H<sub>3,1</sub>. Sketch the graph of the function. Show, that H<sub>3,1</sub>±H<sub>1,2</sub>.
- H. Write the formula for the Haar function H<sub>4,2</sub>. Sketch the graph of the function. Show, that H<sub>4,2</sub>⊥H<sub>0,0</sub>.
- H. Write the formula for the Haar function H<sub>3,2</sub>. Sketch the graph of the function. Compute the norm of H<sub>3,2</sub>.
- H. Write the formula for the Haar function H<sub>5,1</sub>. Sketch the graph of the function. Show, that H<sub>5,1</sub>⊥H<sub>0,0</sub>.
- H. Write the formula for the Haar function H<sub>2,2</sub>. Sketch the graph of the function. Show, that H<sub>2,2</sub>⊥H<sub>2,1</sub>.

In the  $L^2([-1,1])$  space let us consider the complete ON systems of Legendre polynomials. Compute the first 2 Fourier coefficients of  $f(x) = \sin(\pi x)$ . (Hint. The first 2 Legendre polynomials are:  $P_0(x) = \frac{1}{\sqrt{2}}$ ,  $P_1(x) = \sqrt{\frac{3}{2}}x$ )

(Hint. The first 2 Legendre polynomials are: 
$$P_0(x) = \frac{1}{\sqrt{2}}$$
,  $P_1(x) = \sqrt{\frac{3}{2}}x$ )

$$c_0 = \angle f(x), P_0(x) > = \int_{-1}^{\Lambda} \int_{\sqrt{2}}^{\pi_{11}} \int_{\sqrt{2}}^{\pi_{12}} \int_{\sqrt{2}$$

- F. In the  $L^2([-1, 1])$  space let us consider the complete ON systems of Legendre polynomials. Compute the first 2 Fourier coefficients of  $f(x) = e^{-x}$ . (Hint. The first 2 Legendre polynomials are:  $P_0(x) = \frac{1}{\sqrt{2}}$ ,  $P_1(x) = \sqrt{\frac{3}{2}}x$ )
  - systems of Legendre  $x) = e^{-x}.$   $P_1(x) = \sqrt{\frac{3}{2}}x)$
- F. In the  $L^2([-1,1])$  space let us consider the complete ON systems of Legendre polynomials. Compute the first 2 Fourier coefficients of  $f(x) = e^{2x}$ . (Hint. The first 2 Legendre polynomials are:  $P_0(x) = \frac{1}{\sqrt{2}}$ ,  $P_1(x) = \sqrt{\frac{3}{2}}x$ )

systems of Legendre 
$$x) = e^{2x}$$
.  $P_1(x) = \sqrt{\frac{3}{2}}x$ )

Q1. X and Y are finite dimensional normed spaces. If  $T: X \to Y$  linear operator is continuous at  $x_0 = 0$ , then it is bounded.



B

Q1. Let  $T:C[a,b]\to\mathbb{R}$  be the integral-operator. Then it is continuous at any  $f\equiv c$  constant function.



Q1. X and Y are vector spaces,  $T:X\to Y$  is a linear operator. Then Tx=0 is equivalent to x=0.



Q1. X and Y are normed spaces. If T: X → Y is a non-trivial linear operator, then the maximal value of ||Tx|| can be at x = 0.



Q2. X and Y are normed spaces. T: X → Y is a linear operator, that is not continuous at x<sub>0</sub> = 0. Then for any n ∈ N there is a unit vector x<sub>n</sub> ∈ X such that ||Tx<sub>n</sub>|| > n.



Q2. X and Y are infinite dimensional normed spaces. T: X → Y is a bounded linear operator Then for an appropriate c > 0, the operator cT is not continuous at some point in X.



Q2. X and Y are normed spaces. T : X → Y is a linear operator, that is not bounded. Then for an appropriate ε > 0, the operator εT is continuous at x<sub>0</sub> = 0.



Q2. Let X be a Banach space, T, S ∈ B(X) bounded linear operators, both of them are invetrible. Then T + S is also invertible.



Q2. Let X be a Banach space,  $T, S \in B(X)$  are bounded linear operators, both of them are invertible. Then TS is also invertible.

ON. T: (R<sup>2</sup>, ||·||<sub>∞</sub>) → (R, |·|) is a linear operator defined as T(x<sub>1</sub>, x<sub>2</sub>) = 2x<sub>1</sub> − 3x<sub>2</sub>. Compute ||T||, choose the correct answer.

$$|2X_1 - 3X_2| \leq |2X_1| + |3X_2| \leq (2+3) \cdot max(|X_1|X_2|) = 5 \cdot ||X||_{\infty}$$
  
 $X = [1, -1] \quad \text{if is eq.}$ 

ON. T: (R<sup>2</sup>, ||·||<sub>1</sub>) → (R, |·|) is a linear operator defined as T(x<sub>1</sub>, x<sub>2</sub>) = 3x<sub>1</sub>-4x<sub>2</sub>. Compute ||T||, choose the correct answer.

$$|3x_1 - 4x_2| \le |3x_1| + |4x_2| \le 4 \cdot (|x_1| + |x_2|) = 4 \cdot ||x||_1$$
  
 $x = [0, -1] \text{ it is eq.}$ 

ON.  $T: (\mathbb{R}^2, \|\cdot\|_{\infty}) \to (\mathbb{R}, |\cdot|)$  is a linear operator defined as  $T(x_1, x_2) = -15x_1 - 5x_2$ . Compute  $\|T\|$ , choose the correct answer.

$$(20)$$
  $-20$   $15$   $-15$   $5$ 

ON. T: (R<sup>2</sup>, ||·||<sub>1</sub>) → (R, |·|) is a linear operator defined as T(x<sub>1</sub>, x<sub>2</sub>) = −5x<sub>1</sub> − 15x<sub>2</sub>. Compute ||T||, choose the correct answer.

B. Let us define the linear operator  $S: \ell^2 \to \ell^2$  as

$$S(x_1, x_2, ...) := (x_1, x_2, ..., x_{100}, 0, 0, ...)$$
 i.e.  $(Sx)_k = 0 \ \forall k > 100$ .

Verify, that S is bounded, and compute the norm of it. Is it invertible?

B. Let us define the linear operator  $S: \ell^2 \to \ell^2$  as

$$S(x_1, x_2, ...) := (x_1, 0, x_3, ..., 0, x_{2k+1}, 0, ...)$$
 i.e.  $(Sx)_{2k} = 0 \ \forall k$ .

Verify, that S is bounded, and compute the norm of it. Is it invertible?

B. Let us define the linear operator  $S: \ell^2 \rightarrow \ell^2$  as

$$S(x_1, x_2, ...) := (2x_1, 2x_2, ..., 2x_{10}, 0, 0, ...)$$
 i.e.  $(Sx)_k = 0 \ \forall k > 10$ .

Verify, that S is bounded, and compute the norm of it. Is it invertible?

B. Let us define the linear operator  $S: \ell^2 \to \ell^2$  as

$$S(x_1, x_2, ...) := (0, 2x_2, 0, 2x_4, 0, ..., 0, 2x_{2k}, 0, ...)$$
 i.e.  $(Sx)_{2k+1} = 0 \ \forall k$ .

Verify, that S is bounded, and compute the norm of it. Is it invertible?

$$\leq \sqrt{4x_1^2 + 4x_2^2 + \ldots} = 2 \cdot ||x||_2 = 2 \cdot ||x||_2$$

Non invertible, 
$$\in$$
 not summertize, nor injective  
 $x_1 = [1, 1, 0, 0...]$   $5x_1 = 5x_2 = [0, 2, 0...]$ 
 $x_2 = [2, 1, 0.0...]$  Lut  $x_1 \neq x_2$ 

Q1. The spectrum of any operator in  $\mathcal{B}(\ell^2)$  has infinite number of elements.



- Q1. If  $T \in \mathcal{B}(\mathbb{R}^3)$ , then  $\sigma(T)$  has at most 3 elements.
- Q1. If the spectrum of  $T \in \mathcal{B}(\mathbb{R}^3)$  contains the 0 element, then T is not invertible.
- Q1. Let  $T \in \mathcal{B}(\ell^2)$ . Then  $\lambda \in \sigma(T)$  iff  $\lambda$  is an eigenvalue.



- Q1. If  $\lambda$  is an eigenvalue of  $T \in \mathcal{B}(\ell^2)$ , then  $\lambda$  belongs to the spectrum of T for sure.
- Q2. If X is a normed space, then it's dual space is always complete, i.e.  $X^*$  is Banach space.



- Q2. H is a Hilbert spaces, and let us consider the null-operator in  $\mathcal{B}(H)$ . It's spectrum is  $\emptyset$ , the empty set.
- Q2. The spectral radius of an operator may be 0.
- Q2.  $T \in \mathcal{B}(\ell^{\infty})$ . Then it is possible to find elements of the spectrum  $\lambda_n \in \sigma(T)$  such that  $\lim_{n \to \infty} |\lambda_n| = +\infty$ .
- Q2. The spectral radius of any  $T \in \mathcal{B}(X)$  is equal to ||T||.



D. Let X = ℝ<sup>2</sup> equipped with norm || · ||<sub>3</sub>. Choose the dual space X\* with the appropriate norm.

$$(\mathbb{R}^2, \|\cdot\|_{3/2})$$
  $(\mathbb{R}^2, \|\cdot\|_3)$   $(\mathbb{R}^2, \|\cdot\|_{2/3})$   $(\mathbb{R}^2, \|\cdot\|_2)$ 

D. Let X = ℝ<sup>3</sup> equipped with norm || · ||<sub>2</sub>. Choose the dual space X\* with the appropriate norm.

$$\left(\mathbb{R}^{3},\left\|\cdot\right\|_{2}\right)$$
  $\left(\mathbb{R}^{3},\left\|\cdot\right\|_{1}\right)$   $\left(\mathbb{R}^{2},\left\|\cdot\right\|_{3}\right)$   $\left(\mathbb{R}^{2},\left\|\cdot\right\|_{\infty}\right)$ 

D. Let X = ℝ<sup>2</sup> equipped with norm ||·||<sub>∞</sub>. Choose the dual space X\* with the appropriate norm.

$$(\mathbb{R}^2, \|\cdot\|_1)$$
  $(\mathbb{R}^2, \|\cdot\|_{\infty})$   $(\mathbb{R}^2, \|\cdot\|_2)$  none of the others

D. Let X = ℝ<sup>n</sup> equipped with norm || · ||<sub>3</sub>. Choose the dual space X\* with the appropriate norm.

$$\underline{\left(\mathbb{R}^{n}, \left\|\cdot\right\|_{3/2}\right)} \qquad \left(\mathbb{R}^{n}, \left\|\cdot\right\|_{n/2}\right) \qquad \left(\mathbb{R}^{n}, \left\|\cdot\right\|_{n/3}\right) \qquad \left(\mathbb{R}^{n}, \left\|\cdot\right\|_{2}\right)$$

Sp. Consider the following linear operator T: C[0,1] → C[0,1] defined as (Tx)(t) := e<sup>t</sup>x(t) for t ∈ [0,1]. Determine the spectrum and the eigenvalues of operator T.

Eigenralies:

Spectoun:

Those 
$$\Omega$$
-s, where  $(T-\chi I) \times is$  not invitible  $(e^t-\chi) \cdot \chi(t)$ 
Inverse can be  $\frac{1}{e^t-\chi} \cdot \chi(t)$ 

It esists only if 
$$e^{t} \neq 2$$
 in  $t \in [0,1]$ 
 $\Rightarrow$  it is not invertible, if  $2 \in [e^{e}, e^{t}] = [1, e]$ 
 $\sigma(c) = [1, e]$ 

- Sp. Consider the following linear operator T: C[-1,1] → C[-1,1] defined as (Tx)(t) := tx(t) for t ∈ [-1,1]. Determine the spectrum and the eigenvalues of T. no eigenvalue σ = [-1, 1]
- Sp. Consider the following linear operator G: C[0, 2] → C[0, 2] defined as (Gx)(t) := √tx(t) for t ∈ [0, 2]. Determine the spectrum and the eigenvalues of G. no eigenvalue σ = [0, √2]
- Sp. Consider the following linear operator B: C[0, π] → C[0, π] defined as (Bx)(t) := sin(t)x(t) for t ∈ [0, π]. Determine the spectrum and the eigenvalues of B. no eigenvalue σ = [0, 1]