Goals

- Unmanned Aerial Vehicle (UAV) technology is maturing
 - UAVs are ready for autonomous missions technically
 - Surveillance, firefighting, agriculture, etc.
 - Autonomous missions are not authorized
 - Missing redundancy
 - Missing collision avoidance device
 - Automatic collision avoidance device is needed even for remotely piloted UAVs
- Remote aircraft detector sensor development is introduced in this presentation
 - "When Will We Have Unmanned Commercial Airliners?"
 - IEEE Spectrum Magazine
 - December 2011

Sense and avoid – key issue

Outline

- Goals
 - Sense and avoid problem
- System requirements
- Closed loop visual SAA system
- Vision system architecture
- Algorithms
- Many core processor array implementation

Requirements

- Detect a 10m aircraft from 2km
- 0.1 degree/pixel resolution
- min. 220x60° view angle
- Flyable size/weight/power figures (@25Hz, <1W, <500g)
- On-board data storage

Closed loop SAA system

HIL simulator

Camera selection

- Single camera with wide angle optics
 - Easy from architectural, algorithmic, and processing side
 - Low distortion, ultra wide view angle optics are bulky
- 3 pieces of C-mount cameras
 - Good image quality
 - Relatively large size, volume, and power (1kg, 10W)
 - High speed serial I/O (USB, Gige, firewire) difficult to connect to embedded systems
- 5 pieces of miniature cameras (M12 lens)
 - Max 1.2 megapixel with global shutter
 - 50g, 200mW
 - Poorer image quality
- Micro cameras
 - Very advantageous size/weight/power figures
 - Rolling shutter only

Architecture

- High resolution camera system in the visual range
 - Elongated, (220x60°)
 - Large view angle
 - min 2MPixel
- FPGA processing system
 - High computational power
 - Low power consumption
- Solid state disk
 - Bandwidth
 - Capacity
 - Vibration

Collision avoidance devices

- Radar based
 - Applied on large airliners (Airbus)
- Radar and vision
 - Applied on large remotely piloted UAVs (predator)
- Transponder based
 - TCAS, ADS-B (all manned aircrafts and larger UAVs)
- Vision only
 - Currently developed (small UAVs)
- Basic requirements
 - Equivalent safety
 - Probabilities of collision < 10^-11 per flight hour
 - Layered approach
Sensor and computational system
- 5 pieces of wVGA micro cameras
 - Aptina MBSV034 sensor
 - 5g
 - <150mW
 - 3.8mm megapixel objectives (M-12)
 - 70 degrees between two cameras
 - Total view angle: 220° x 78°
- FPGA board with Spartan 6 FPGA
- Solid State Drive (128Gbyte)

Mechanics
- Stable camera holder
 - Alignment
 - Avoids cross vibration of the cameras
 - 100g
 - Aluminum alloy
 - Electronics in the middle
 - Covered with aluminum plates

Hardware system
- Sensing and processing system
 - Field of view: 220° x 78°
 - Resolution: 2250x752
 - Frame-rate: 56 FPS
 - Processor: Spartan6 L45 FPGA
 - Storage: 128Gbyte (23 min)
 - Size: 125x145x45mm
 - Weight: ~450g (~1lb)
 - Power consumption: <8W

Vision system mounted to the airplane

View angle

Algorithmic components
- Aircraft detection against sky background
 - Preprocessing on the full frame
 - Identifying candidate points
 - Post processing
 - Discarding non-relevant candidate points
 - Tracking
 - Multi-level global and local adaptivity
- Aircraft detection against terrain background
 - Visual-inertial data fusion
 - Motion based moving object detection

Detection against the blue sky

Preprocessing (full frame)
- Identifies the candidate aerial objects
- Finds numerous false targets also
- Local adaptation based on edge density
- Global adaptation based on number of candidate points

Preprocessing (full frame)
- Identifies the candidate aerial objects
- Finds numerous false targets also
- Local adaptation based on edge density
- Global adaptation based on number of candidate points
Post processing (ROIs)

- Discard edges of clouds
- Significantly reduces the number of candidate points
- Resulting few targets can be tracked

- Cutting the perimeter of each object
- Histogram calculation
- Accept candidate point
- Reject candidate point
- Variance high?

Tracking on image plane

- Candidate objects:
 - Separate objects
 - Track objects
- Filtering according to:
 - Velocity, acceleration
- InstantVision™ 4.1 Multitarget Tracking Library (Eutecus Inc.)

Example 1: Ground camera in hand

Example: Airborne camera

Pre- and post processing

Red points: all candidate objects
Green point: allowed by post processing

Pre- and post processing + tracking

Red points: all candidate objects
Green points: allowed by post processing
Blue points: tracked objects
Many-core processor arrays implemented in FPGA

- FPGA chips have the largest computational capability nowadays
- In affordable medium size FPGAs:
 - Over 200 DSP cores
 - 200 memory blocks
 - 500 I/O pins
 - Low power consumption
- Special purpose processor arrays
- How to utilize this performance?
 - Many-core architectures
 - Specially optimized data and control paths
 - Distributed control units

References

Many-core processor arrays implemented in FPGA

- FPGA chips have the largest computational capability nowadays
- In affordable medium size FPGAs:
 - Over 200 DSP cores
 - 200 memory blocks
 - 500 I/O pins
 - Low power consumption
- Special purpose processor arrays
- How to utilize this performance?
 - Many-core architectures
 - Specially optimized data and control paths
 - Distributed control units

References