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InpEX

PREFACE

This book is the second volume of Elements of the Theory of Functions
and Functional Analysis (the first volume was Metric and Normed Spaces,
Graylock Press, 1957). Most of the second volume is devoted to an ex-
position of measure theory and the Lebesgue integral. These concepts,
particularly the concept of measure, are discussed with some degree of
generality. However, in order to achieve greater intuitive insight, we begin
with the definition of plane Lebesgue measure. The reader who wishes to
do so may, after reading §33, go on at once to Ch. VI and then to the
Lebesgue integral, if he understands the measure relative to which this
integral is taken to be the usual linear or plane Lebesgue measure.

The exposition of measure theory and the Lebesgue integral in this
volume is based on the lectures given for many years by A. N. Kolmogorov
in the Department of Mathematics and Mechanics at the University of
Moscow. The final draft of the text of this volume was prepared for pub-
lication by S. V. Fomin.

The content of Volumes 1 and 2 is approximately that of the course
Analysis III given by A. N. Komogorov for students in the Department
of Mathematics.

For convenience in cross-reference, the numbering of chapters and sec-
tions in the second volume is a continuation of that in the first.

Corrections to Volume 1 have been listed in a supplement at the end of
Volume 2.

A. N. KorL.MOGOROV
S. V. Fomin

January 1958



TRANSLATORS’ NOTE

In order to enhance the usefulness of this book as a text, a complete
set of exercises (listed at the end of each section) has been prepared by
H. Kamel. It is hoped that the exercises will not only test the reader’s
understanding of the text, but will also introduce or extend certain topics
which were either not mentioned or briefly alluded to in the original.

The material which appeared in the original in small print has been en-
closed by stars &% in this translation.



Chapter V
MEASURE THEORY

The measure u(A) of a set A is a natural generalization of the following
concepts:

1) The length I(A) of a segment A.

2) The area S(F) of a plane figure F.

3) The volume V(@) of a three-dimensional figure G.

4) The increment ¢(b) — ¢(a) of a nondecreasing function ¢(¢) on a
half-open interval [a, D).

5) The integral of a nonnegative function over a one-, two-, or three-
dimensional region, etc.

The concept of the measure of a set, which originated in the theory of
functions of a real variable, has subsequently found numerous applications
in the theory of probability, the theory of dynamical systems, functional
analysis and other branches of mathematics.

In §33 we discuss the concept of measure for plane sets, based on the
area of a rectangle. The general theory of measure is taken up in §§35-39.
The reader will easily notice, however, that all the arguments and results
of §33 are general in character and are repeated with no essential changes
in the abstract theory.

§33. The measure of plane sets

We consider the collection & of sets in the plane (z, y), each of which is
defined by an inequality of the form
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where a, b, ¢ and d are arbitrary real numbers. We call the sets of & rec.
tangles. A closed rectangle defined by the inequalities

aLz<b; c<y<d

AnB=VU,;(P:nQ;)

is also an elementary set.

It is easily verified that the difference of two rectangles is an elementary
set. Consequently, subtraction of an elementary set from a rectangle yields
an elementary set (as the intersection of elementary sets). Now let A and
B be two elementary sets. There is clearly a rectangle P containing both
sets. Then

is a rectangle in the usual sense (together with its boundary) if @ < b and
¢ < d,orasegment (ifa =bandc <dora <bandc = d), or a point
(if @ = b, ¢ = d), or, finally, the empty set (if a > b or ¢ > d). An open
rectangle

AuB=P\[(P\4)n(P\B)]

 i8 an elementary set. Since

a<z<b; c<y<d
is a rectangle without its boundary or the empty set, depending on the

relative magnitudes of a, b, ¢ and d. Each of the rectangles of the remaining AN'B = An (P\ B),
types (we shall call them half-open rectangles) is either a proper rectangle _
with one, two or three sides included, or an interval, or a half-interval, or, AAB=(4vB)\(4nB),

finally, the empty set.

The measure of a rectangle is defined by means of its area from ele-
mentary geometry as follows:

a) The measure of the empty set @ is zero.

b) The measure of a nonempty rectangle (closed, open or half-open),
defined by the numbers g, b, ¢ and d, is equal to

(b —a)(d — o).

Hence, we have assigned to each rectangle P a number m(P)—the meas-
ure of P. The following conditions are obviously satisfied:

1) The measure m(P) is real-valued and nonnegative.

2) The measure m(P) is additive, i.e., if P = Uf_; P, and P;n P, =
for 7 5= k, then

it follows that the difference and the symmetric difference of two elementary
 sets are elementary sets. This proves the theorem.
We now define the measure m’(A) of an elementary set A as follows: If

A=U,P,
~ where the P; are pairwise disjoint rectangles, then
m'(4) = 2 m(Py).
We shall prove that m’(4) is independent of the way in which A is repre-
sented as a union of rectangles. Let
A =U, P, = U;Q;,
where P; and Q; are rectangles, and P;n P, = 6, Q;:n @, = @for¢ == k.

Since P n Q; is a rectangle, in virtue of the additivity of the measure for
rectangles we have

S

m(P) = 3 m(Py).

Our problem is to extend the measure m(P), defined above for rectangles,

~ 7 to a more general class of sets, while retaining Properties 1) and 2). 1 Zem(Pe) = Lorym(Pen Q) = 205m(@s).
| The first step consists in extending the concept of measure to the so | It is easily seen that the measure of elementary sets defined in this way is
" _called elementary sets. We shall call a plane mg_‘..&mgﬁwﬁy if it can be § nonnegative and additive. )
I\u\«,qmgmu“ in at least one way, as a union of a finite number of pairwise dis- | | A property of the measure of elementary sets important for the sequel is
\ _joint rectangles. . : T - | given by :
" In the sequel we shall need |  Tusorem 2. If A is an elementary set and {A.} is a countable (finite or
TaeoreM 1. The union, intersection, difference and symmetric difference | denumerable) collection of elementary sets such that
of two elementary sets is an elementary set. | AcU, A
Proof. Tt is clear that the intersection of two rectangles is again a rec- | e
tangle. Therefore, if L then
A=UP, B=U;q L (1) m'(4) £ Xam'(4,).

are elementary sets, then Proof. For arbitrary ¢ > 0 and given A there obviously exists a closed
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4 MEASURE THEORY

elementary set A contained in A and satisfying the condition
m'(A) > m/'(4) — ¢/2.

[It is sufficient to replace each of the k rectangles P; whose union is 4 by a
&owmm rectangle contained in P; and having an area greater than m(P;) —
€ \N +1 “_

Furthermore, for each n there is an open elementary set A, containing
4, and such that

m'(A,) < m'(4,) + ¢/2"1.

It is clear that

- —~

AcU,4,.

Since A is compact, by the Heine-Borel theorem (see §18, Theorem 4)

{A.} contains a finite subsequence 4,, , , A, which covers 4. Ob-
Socm_ua

m'(4) < am'(4,,).

[In the contrary case A would be covered by a finite number of rectangles
the sum of whose areas is less than m '(4), which is clearly impossible.]
Therefore,

m'(A) < m'(A) + ¢/2 < Diam'(4,,) + ¢/2

< Yam'(4,) + ¢/2
< am'(4a) + Xae/2" 4 ¢/2
Ma S\AKA:V + e

Since ¢ > 0 is arbitrary, (1) follows.

The class of elementary sets does not exhaust all the sets considered in
elementary geometry and classical analysis. It is therefore natural to pose
the question of extending the concept of measure, while retaining its
\ fundamental properties, to a class of sets wider than the finite unions of
umnﬁmbmwom with sides parallel to the coordinate axes.

This problem was solved, in a certain sense definitively, by Lebesgue in
the early years of the twentieth century.

In presenting the Lebesgue theory of measure it will be necessary to
consider not only finite, but also infinite unions of rectangles.

In order to avoid infinite values of the measure, we restrict ourselves i in
0<z<1;0<y< 1.

We define two functions, x*(4) and wx(4), on the class of all sets 4
contained in E.

§33] THE MEASURE OF PLANE SETS 5

DerNiTION 1. The outer measure u*(A) of a set A is
p*(A) = inf { D SQ&“V A c UP,

where the lower bound is taken over &N 8%33% &q ,HS\ countable collections

of rectangles. .
DEFINITION 2. The inner measure psx(A) of a set A is

px(4) = 1 — p*(E\A4).

It is easy to see that

< w*(4)

rx(4)

for every set 4.
For, suppose that there is a set A C E such that

px(4) > p*(4),
ie.,
p*(4) + p*(EN\4) <L

Then there exist sets of rectangles {P;} and {Q: covering A and E '\ 4,
respectively, such that

Sim(Ps) + em(Qr) < 1.
PJ and {Q4 by {R
m(E) > 2;m(R;).

Denoting the union of the sets { i}, we see that

E c U;R;,
This contradicts Theorem 2.
DEFINITION 3. A set A is said to be measurable (in the sense of Lebesgue)
if
px(4) = p*(4).
The common value u(A) of the outer and inner measures of a 38«5%&,

set A is called iis Lebesgue measure; ,
We shall derive the fundamental properties of Lebesgue measure _mum
measurable sets, but first we prove the following property of outer measure.

Taeorem 3. If

AcU.4,,
where {A,} s a countable collection of sets, then
pH(A) < 2 u*(4a).

Proof. According to the definition of outer measure, for each n and every
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€ > 0 there is a countable collection of rectangles {P,x} such that 4,
Cw P, nk and

2 m(Pu) < u*(4.) + /2"
Then
kA. n c: Ca wau )
and

pHA) < 20 2 m(Pu) < Yo u*(4a) + e
This completes the proof of the theorem.

Theorem 4 below shows that the measure m’ introduced for elementary

sets coincides with the Lebesgue measure of such sets.
THEOREM 4. Every elementary set A is measurable, and u(A) = m'(A).

Proof. If A is an elementary set and P,, --+, P; are rectangles whose

union is 4, then by definition
m'(4A) = Y5, m(Py).
Since the rectangles. P; cover A,
W (4) < Tuim(P) = m'(4).

But if {Q;} is an arbitrary countable set of rectangles .oo<oabm A, then, by
Theorem 2, m'(4) < 3; m(Q;). Consequently, m’'(4) < u*(4). Hence,
m'(4) = u*(4).

Since £\ 4 is also an elementary set, m'(E\\A) = p*(E\ 4). But
M(ENA) =1-m'(4), pHEN\A)=1— py(4).
Hence,
m'(4) = ux(4).
Therefore,
m'(4) = p*(4) = ps(4) = p(4).

Theorem 4 implies that Theorem 2 is a special case of Theorem 3.
THEOREM 5. I'n order that a set A be measurable it 18 necessary and sufficient
that it have the following property: for every e > 0 there exists an elementary

set B such that
L*(AAB) < e

In other words, the measurable sets are precisely those which can be
approximated to an arbitrary degree of accuracy by elementary sets. For
the proof of Theorem 5 we require the following

§33] THE MEASURE OF PLANE SETS 7

LemMA. For arbitrary sets A and B,
[ w*(4) — w*(B) | < w*(4 AB).
Proof of the Lemma. Since
AcCcBu(4AAB),

it follows that
w¥*(4) < w*(B) + u*(4 AB).

Hence the lemma, follows if u*(4) > p*(B). If p*(4) < p*(B), the lemma
follows from the inequality

w*(B) < w*(4) + w*(4 AB),

which is proved in the same way as the inequality above.

Proof of Theorem 5. )
Sufficiency. Suppose that for arbitrary ¢ > 0 there exists an elementary

set B such that
p*(AAB) <e
Then, according to the Lemma,
(1) | u*(4) — m'(B) | = |u*(4) — p*(B) | < e
In the same way, since
(ENA)A(E\B) = AAB,

it follows that
(@) |W(ENNA) —m'(EN\B)| <e
Inequalities (1) and (2) and

m'(B) + m'(EN\B) = m'(E) =1
imply that

|w*(4) + p*(E\4) — 1| < 2e
Since ¢ > 0 is arbitrary,

p*(4) + p*(E\4) =1,

and the set A is measurable. )
Necessity. Suppose that A is measurable, ie.,

p*(A) + p*(EN\4) = 1.
For arbitrary ¢ > 0 there exist sets of rectangles {B,} and {C.} such that
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AcU,B.,, E\AcU,c,

THEOREM 6. The union and intersection of a finite number of measurable

els are measurable sets. &
Proof. It is clearly enough to prove the assertion for two sets. Suppose

hat A, and A, are measurable sets. Then for arbitrary ¢ > 0 there are
_elementary sets B; and B, such that

p*(4; A By) < ¢/2, p¥(42 A By) < €/2.

and such that
2am(By) < u¥4) + ¢/3,  T.m(C.) < wH(ENA) + ¢3.
Since Y, m(B,) < =, there is an N such that
2oy m(B,) < ¢/3;
set Since
B=YrVg,. (A1u As) A (Byu B:) € (A1 ABy) u (4; A By),

It is clear that the set it follows that

P = C:V% .ws Amv t*:h&. 8] k&wv A A.ww U wwv“_ m F*Ak&.n Dwuv |_I t*Axﬁw Dwmv <e
contains A \ B, while the set ince B; U B, is an elementary set, it follows from Theorem 4 that 4, u 4,
Q=U,(BnC,) measurable.

But in view of the definition of measurable set, if A is measurable, so is
\\ 4; hence, 4; n 4, is measurable because of the relation

\wu Dxﬁw = .@-/zm/k.u.v (5] Am_/xﬁm:

CoroLLARY. The difference and symmetric difference of two measurable
ets are measurable. . —
This follows from Theorem 6 and the relations

.m.w//\_.w = \haDA.@/»AkvV

contains B\ 4. Consequently, A AB C P u Q. Also
p*(P) < Xasym(Ba) < ¢/3.

Let us estimate p*(Q). To this end, we note that
(UaB.) u (Ua (C.\\B)) = E,

and consequently

3) 2nm(Ba) + 2. m'(Cu\\B) > 1. Ay A Ay = (A1 N\ 4s) U (42 \ Ay).
But, by hypothesis, TaeorEM 7. If Ay, -+ , A, are pairwise disjoint measurable sets, then
V|‘3 w: n n * * g » T
@y nmBn)  Tam(C) < wA) + pHENA) + 2¢/3 p(Ups 4g) = S u(Ay). /
=1+ 2¢/3. Proof. As in Theorem 6, it is sufficient to consider the case n = 2. Choose

From (3) and (4) we obtain
2am(Ca) — 2am'(Ca\\B) = S am/(Cann B) < 2¢/3,

arbitrary ¢ > 0 and elementary sets B; and Bs such that
Amv t*A\r AB;) < €,
A.Nv t*A\»n A wnv <e

Set A = Ay u Az and B = By u B;. According to Theorem 6, the set A
measurable. Since

r*(Q) < 2¢/3.

Therefore,
w_. n wm n Am._. A .wwv U AKAN A .Wva

va S\Awn n ‘mw»v m 2e.
n virtue of the Lemma to Theorem 5, (6) and (7) imply that
9) | m'(B1) — p*(41) | < ¢

#*(4 AB) < u*(P) + p*(Q) < e

Hence, if A is measurable, for every ¢ > 0 there exists an elementary set B
such that u*(4 A B) < e This proves Theorem 5.
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(10) | m'(B) — p*(4s) | < e

Since the measure is additive on the class of elementary sets, (8), (9) and
(10) yield

m'(B) = m/(B1) + m'(By) — m'(By n Bs) > p*(A1) + u*(4s) — 4e
Noting that A A B € (4; A B;) u (4; A By), we finally have
w*(A) 2 m'(B) — p*(A AB) > m/(B) — 2¢ > p*(A1) + p*(4s) — 6e
Since 6¢ may be chosen arbitrarily small,

B¥(A) 2 p*(41) + p*(4,).
‘Inasmuch as the converse inequality

p*(4) < p*(41) + p*(4)
is always true for A = A, u A, , we have

p*(4) = p*(41) + u*(4s).

Since A, , A2 and A are Eopmﬁm.zmv r* can be replaced by u, and this prove;
the theorem.

TreEOREM 8. The union %& intersection of a countable number of measur
able sets are measurable sets.

Proof. Let

(11) and (12) imply that
(A AB) <e
Hence, by Theorem 5, the set 4 is measurable.

Since the complement of a measurable set is measurable, the second half
of the theorem follows from the relation

Nwdn = EN U, (E \_4.).

Theorem 8 is a generalization of Theorem 6. The following theorem is the
corresponding generalization of Theorem 7.

TaeoreM 9. If {A.} is a sequence of patrwise disjoint measurable sets, and
4=U,A,, then

w(4) = 2ouu(4a).
Proof. By Theorem 7, for arbitrary N
p(Una 4,) = 20 n(4a) < u(4).
Letting N — o, we obtain
(13) p(A) = 2 ma p(4a).
On the other hand, according to Theorem 3,
(14) p(4) £ 2n=16(4a).

The theorem follows from (13) and (14).

The wuovmuig asure established in Theorem 9 is called complete
additivity \9, qé&s&&@ The following property of the measure, called
continuity, is an immedidte consequence of s-additivity. -

TrrorEM 10, If A1 D A; D --- is a monotone decreasing sequence o.w\
measurable sets, and A = N, A, , then

p(A) = limg.e u(4,).

It is obviously sufficient to consider the case A = @, since the general

Ay, ooe An,y ee

be a countable collection of measurable sets, and let A = UZ_; 4,. Se
A = A\ Uil A, Tt isclearthat A = U?_; 4,/ and that the sets 4,
are pairwise 9393. By Theorem 6 and its Corollary, all the sets A, are

measurable. According to Theorems 7 and 3, ‘

Mml w(Ay) = p(Uim 4Y) < u(4)

for arbitrary finite n. Therefore, the series

w1 1(4,) case reduces to this on replacing 4, by 4, \ 4. Then
converges, and consequently for arbitrary ¢ > 0 there exists an N such that = (A1 \\4:) u (42 \45) U ---
(11) Dowu(da') < ¢/2. and

Since the set ¢ = UJ_; 4,/ is measurable (as a union of a finite number of = (A \\Anp1) U (Anpi \Ans2) U -+

measurable sets), there exists an elementary set B such that
(12) r*(C AB) < ¢/2.

Inasmuch as

(15) p(Ar) = e w(Ar\ Ar)

AABC(CAB)u (Upsrd,), (16) p(An) = 2hen n(4r\ Arn1);
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cases is constructed in the same way: starting with a measure defined for
a certain class of @B@E sets (rectangles in the plane; open, closed and
‘half-openintervals on the ‘line; etc.) we first define a measure for finite
‘unions of such sets, and then extend it to the much wider class of Lebesgue
‘measurable sets. The definition of measurable set is carried over verbatim
o sets in a space of arbitrary (finite) dimension.

4. To introduce Lebesgue measure we started with the usual definition
f area. The analogous construction in one dimension is based on the length
of an interval. However, the concept of measure can be introduced in an-
other, somewhat more general, way.

Let F(t) be a nondecreasing and left continuous function defined on the
eal line. We set

since the series (15) converges, its remainder (16) approaches zero as
n — . Hence,

k(A2) = 0 | (n— @

This is what we were to prove.
CoroLrary. If A1 C Ay C -+ is a monotone increasing sequence of meas-
urable sets and A = U, A, , then

p(A) = limp,e u(4,).

To prove this it is sufficient to replace the sets 4, by their complements
and then to use Theorem 10.
We have now extended the measure defined on the elementary sets to

the wider class of measurable sets. The latter class is closed with respect »”,:Aa, b) = F(b) — F(a + 0),

to the operations of countable unions and intersections, and the measure

on this class is o-additive. q,,,;? b = F(b + 0) — F(a),
We conclude this section with a few remarks. m(a, b] = F(b + 0) — F(a + 0),
1. The theorems we have proved characterize the class of Lebesgue

measurable sets. , mle, b) = F(b) — F(a).

Since every open set contained in E can be written as a union of a count
able number of open rectangles, that is, measurable sets, Theorem 8 im.
plies that every open set is measurable. The closed sets are also measurabl

i easily verified that! the interval function m defined in this way is non-
egative and additive. Huaogo&bm in the same way as described above,
e can construct a certain “measure” ur(4). The class of sets measurable
relative to this measure is\closed under the operations of countable unions
nd intersections, and ur is o-additive. The class of ur-measurable sets will,
general, depend on the choice of the function F. However, the open and
osed sets, and consequently their countable unions and intersections,
ill be measurable for arbitrary choice of F. The measures ur, where F
arbitrary (except for the conditions imposed above), are called Lebesgue-
. Stieltjes measures. In cmaaos_m,ﬁ the function F(¢) = ¢ corresponds to the
sual Lebesgue measure on the'real line.

A measure pr which is equal to zero on every set whose Lebesgue meas-
e is zero is said to be aww&ﬁa@ continuous. A measure up whose set of
values is countable [this will occur whenever the set of values of F(t) is
untable] is said to be discrete. A measure py is called singular if it is zero
on every set consisting of one woﬁ; and if there is a set M whose Lebesgue
easure is zero and such that the r r measure of its complement is zero.

It can be proved that every measure pr is & sum of an absolutely con-
nuous, a discrete and a singular measure.

since they are the complements of thé open sets. In view of Theorem 8, al
sets which can be obtained from the open and closed sets by taking coun
able unions and intersections are also measurable. It can be shown, how
ever, that these sets do not exhaust the class of all Lebesgue measurable
sets.

2. We have considered only plane sets contained in the unit square
E = {0 < z,y < 1}. Tt is not hard to remove this restriction. This can be
done, for instance, in the following way. No@ummgazm the s&o_m plane a;
the union of the squares E,p = (n <2 <n+1,m<y<m-+1 (m,
integers) }, we define a plane set 4 to be Bmmngzm if its intersection A,, =
A n E,,, with each of these squares is measurable, and the series

M:.s_ tAquav

converges. We then define

tﬂxﬁv = MU.:.»: IAkA.::.v.

All the measure properties derived above carry over in an obvious fashio
to this case.
3. In this section we rm<o ooumﬁsaﬁam b&oomm:m measure for Embo sets

x Existence of nonmeasurable sets. We proved above that the class of
Lebesgue measurable sets is very wide. The question naturally arises
hether there exist nonmeasurable sets. We shall prove that there are such
ts. The simplest example of a nonmeasurable set can be constructed on

circumference. o o) \
/1/ \/ v

TT—




" sulting set & is nonmeasurable. Denote by ®, the set obtained by rotating
., @ through the angle na. It is easily seen that all the sets ®, are pairwise

14 MEASURE THEORY [ca. v B §34] COLLECTIONS OF SETS 15

Let C be a circumference of length 1, and let o be an irrational number.
Partition the points of C into classes by the following rule: Two points of
C belong to the same class if, and only if, one can be carried into the other
by a rotation of C through an angle na (n an integer). Each class is clearly
countable. We now select a point from each class. We show that the re

4 ForE = {(z,9):0<2<1,0< y < 1}, A © E we can restate
‘our definition for the measurability of 4 as follows: 4 is measurable pro-
vided
r¥E) = p*(En A) + u*(E\ 4).

Show that A satisfies the measurability criterion of Carathéodory: For
every F C E,
disjoint and that their union is C. If the set ® were measurable, the sets
®, congruent to it would also be measurable. Since

C=U_ &, &nd,=40 (n =m
the o-additivity of the measure would imply that

AHQV MHHIS tmﬂu:v = 1.

But congruent sets must have the same measure:
B(@a) = u(®).
The last equality shows that (17) is impossible, since the sum of the serie

on the left side of (17) is zero if u(®) = 0, and is infinity if u(®) > 0
Hence, the set ® (and consequently every set ®,) is nonmeasurable. *

EXERCISES
1. If A is a countable set of points contained in

E={(9:0<z<10<y<1}

then A is measurable and u(A4) = 0.
2. Let Fo = [0, 1] and let F be the Cantor set constructed on F, (see
vol. 1, pp. 32-33). Prove that w(F) = 0, where u;(F) is the (linear)
Lebesgue measure of F.
3. Let F be as in Ex. 2. If 2 € F, then

xr = QH\w l_| ces +9=\W=+ ceey,
where a; = 0 or 2. Define
o(z) = a/2' + - + a./2"" + ... (zx €F)

(see the reference given in Ex. 2). The function ¢ is single-valued. If
b € F are such that (a, b) ¢ F [i.e., (a,b) is a deleted open interval in th
construction of F], show that ¢(a) = ¢(b). We can therefore define ®0
[a, b] as equal to this common value. The function ¢ so defined on F,

[0, 1] is nondecreasing and continuous. Show that u, , the Lebesgue-Stieltj
measure generated by ¢ on the set F,, is a singular measure. The functio
¢ is called the Cantor function.

pHF) = p (F n4) + p*(F \ A).

The converse implication is, of -course, trivial.
5. Lebesgue measure in the plane is regular, i.e.,

p*(A) = inf {u(@):4 C G, @ open relative to E}.

6. Derive Lebesgue’s criterion for measurability: A set A C E is meas-
urable if, and only if, for every ¢ > 0 there exist G open (relative to E)
and F closed such that F ¢ 4 @ and (G F) < e (See the definition
of Jordan measurability in §36.) Hint: Apply Ex. 5to A and E \ 4.

! §34. Collections of sets m K D

Our discussion of the abstract theory of measure will presuppose certain
facts about collections of sets, in addition to the elementary theory of sets
presented in Chapter I.

4 collection of sets is a set whose elements are themselves sets. As a rule,
we shall consider collections of sets whose elements are subsets of a fixed
set X. In general, collections of sets will be denoted by capital German
etters. m‘cbmmsmbga%, we shall be interested in collections of sets which
are closed under some (or all) of the operations introduced in Chapter I,
§1. \

DerFiniTioN 1. A ring is a nonempty collection of sets % with the prop-
rty that A € R, B € R imply that A AB € Rand A n B € %,

\

(AAB)A(40nB),
AN'B=A4A(40nB)

N
//c,

&

]

nions, intersections, differences and symmetric differences (of pairs of
ts). Clearly, a ring is also orwmom under finite unions and intersections:

Q = Cm.ﬂn »Vw ) G = Dm.ﬂu k&a .

Every ring contains the empty set @, since A N\ 4 = @. A ring consist-
g of the empty set alone is the smallest possible ring.
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A set E is called a unit of a collection of sets & if it is an element of &
and if

AnE = A

for arbitrary A € &. It is easily seen that if S has a unit, it is unique.

Hence, the unit of a collection of sets & is the maximal set of the collec-
tion, that is, the set which contains every other element of .

A ring of sets with a unit is called an algebra of sets. [Trans. Nore. This
definition leads to difficulties in the statements and proofs of certain the-
orems in the sequel. These difficulties disappear if the usual definition of
an algebra is used: Let X be a set, © a collection of subsets of X. The col-
lection & is called an algebra if & is a ring with unit £ = X.]

ExawmpLis. 1. If A is an arbitrary set, the collection MM (A) of all its sub
sets is an algebra of sets with unit £ = A.

2. If A is an arbitrary nonempty set, the collection {@, A} consisting of
the set 4 and the empty set @ is an algebra with unit £ = A. ,

3. The set of all finite subsets of an arbitrary set A4 is a ring. This ring
is an algebra if, and only, if A4 is finite.

4. The set of all bounded subsets of the real line is a ring without a unit.

An immediate consequence of the definition of a ring is

TaEOREM 1. The intersection R = Mo Ra of an arbitrary number of rings
18 @ ring.

We shall prove the following simple, but important, proposition:

TaroreM 2. If & is an arbitrary nonempty collection of sets, there exists
precisely one ring R(S) containing & and contained in every ring R contain-
ing S. |

Proof. It is easy to see that the ring R(&) is uniquely determined by ©.
To show that it exists, we consider the union X = U, s 4 and the ring
I(X) of all the subsets of X. Let = be the collection of all rings contained
in M(X) and containing &. The intersection

,Hw = D%mumm

is obviously the required ring R(S).
For, if %t* is a ring containing &, then R = R* n PW(X) is a ring in 2;
hence,

SCPCRCRY,

that is, P is minimal. R(S) is called the minimal ring over the collection ©.
[R(S) is also called the ring generated by &.]

The actual construction of the ring R(S) over a prescribed collection &
is, in general, quite complicated. However, it becomes completely explicit

in the important special case when & is a semi-ring.

- §34] COLLECTIONS OF SETS

Dermnrrion 2. A collection of sets & is called a semi-ring if it satisfies

 the following conditions:

(1) & contains the empty set @.
(2) If A, B€ S, then AnB € &.
(3) If A and 4; € A are both elements of &, then

k# = Cwn—“u. mwu

where the sets A are pairwise disjoint elements of &, and the first of the

sets Ay is the given set 4, .
In the sequel we shall call a collection of pairwise disjoint sets

x»: ...v\r:

_ whose union is a set A, a finite partition of the set A.

Every ring R is a semi-ring, since if both 4 and 4; € 4 belong to R,
then A = A; u Ay, where 4, = A \_4; € R.

An example of a semi-ring which is not a ring is the collection of all open,
closed and half-open intervals on the real line. [Among the intervals we
nclude, of course, the empty interval (a, a) and the interval consisting of
one point [a, a).]

In order to show how the minimal ring over a semi-ring is constructed,
we derive several properties of semi-rings.

Lemma 1. Suppose that Ay, -+, An , A are all elements of a semi-ring &,

 where the sets A; are pairwise disjoint subsets of A. Then there is a finite par-
tition of A:

A = Uiy A, (s = n, 4; € &),

;SNS&.E.& n terms are the sets A; (1 < i < n).

The proof is by induction. The assertion is true for n = 1 by the defini-

 tion of a semi-ring. We assume that the proposition is true for n = m and
consider m + 1 sets A1, +++, Am, Anp satisfying the hypothesis of the

emma. In view of the inductive hypothesis,

A=A4,0Au---uUAnuBiuByu - UB,,

where all the sets B, (1 < ¢ < p) are elements of &. Set

By = Apan By,
By the definition of a semi-ring there is a partition
B, = BauBgu -+ uBg,,
where all the sets B,; are elements of ©. It is easy to see that
A=Au - UApuA,uU2, Ui, B,;.

Hence, the lemma is true for n = m -+ 1, and so for all n.
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Therefore, A n B and A A B are elements of 8. Hence 3 is a ring, and it
is obvious that it is the minimal ring containing &.

In various problems, especially in measure theory, it is necessary to con-
sider denumerable, as well as finite, unions and intersections. It is there-
fore necessary to introduce, in addition to the definition of a ring, the fol-
lowing definitions.

LemMa 2. If Ay, « -+, A, are elements of a semi-ring S, there exists in &
a fintte set of pairwise disjoint sets By , - - -, B, such that each Ay can be written
as a union

kAw = C-mm; wu
of some of the sets B, .

Proof. The lemma is trivial for n = 1, since it is then enough to put DermviTION 3. A ring R of sets is called a o-ringif A; € R (6 = 1,2, -++)
t =1, B = A,;. Suppose that the lemma is true for n = m and consider implies that
a collection of sets Ay, « -+, A i1 . Let By, - - -, B, be elements of & satisfy S=U,4,¢%
ing the conditions of the lemma relative to the sets 4;, - - -, 4., . Set e '
DErNITION 4. A ring of sets RN is called a é-ringif A; € R (5= 1,2, --+)

By = Apuin B,.
By Lemma, 1, there exists a partition
(1) Ampr = U4 ByuUS B (B, € ©)
and in view of the definition of a semi-ring there exists a partition
B, = BauBsu--- uBy, (Bsg € ©).

It is easily seen that .

implies that
u = 3: x&.: m mx.

It is natural to call a o-ring (8-ring) with a unit a o-algebra (-algebra).
However, it is easy to see that these two notions coincide: every o-algebra
is a 6-algebra and every é-algebra is a o-algebra. This follows from de Mor-
gan’s laws:

R Cah.a"m.//DaA@//h.zv.
Ak = U,en, UL, B,, (1<k<m), Ny Ar = EN U, (E\4.)
, e
»B% M.gmwﬁrw sets wzm mw r Nuo %upﬁswmm M_m_ogi. MF?N the maam.wz » By (see Chapter 1, §1). o-algebras, or §-algebras, are called Borel algebras;
satisfy the lemma relative to the sets 4, ---, A, , Apyy. This Uuoéw or, briefly, B-algebras.

the lemma.
Levmma 3. If © is a semi-ring, then R(S) coincides with the collection 3
of the sets A which admit of a finite partition

A =Upa 4 (4; € ©).

The simplest example of a B-algebra is the collection of all subsets of a
set A.

For B-algebras there is a theorem analogous to Theorem 2, which was
proved above for rings.

TueorEM 4. If © is a nonempty collection of sets, there exists a B-algebra

Proof. We show that 3 is a ring. If 4, B € 3, then B(S) containing S and contained in every B-algebra containing .
A =UL A, B =UrB, (4s, B € ®). The proof (see Trans. Note, p. 16) is carried out in exactly the same

way as the proof of Theorem 2. The B-algebra B(S) is called the minimal
B-algebra over the system & or the Borel closure of &.

In analysis an important part is played by the Borel sets or B-sets, which
may be defined as the elements of the minimal B-algebra over the set of
all closed intervals [a, b] on the real line (or the set of all open intervals,
or the set of half-closed intervals).

To supplement §7 of Chapter 1 we note the following facts, which will
be required in Chapter VI.

Let y = f(z) be a function defined on a set M with values in a set N.
Denote by f(I) the collection of all images f(4) of sets in M, where M
is a set of subsets of M. Similarly, let F(0) be the collection of all inverse
images f'(A), where R is a set of subsets of N. Then:

Since & is a semi-ring, the sets
Cij = A;n B;
are also elements of &. By Lemma 1,
(2) A;=U;Ci;uUiiDa; By = U;Ciju Uiy By,
where Dy, , Ejx € &. The equality (2) implies that
AnB=VU,;Cy,
AAB=VU;;DyuVU;, Ej.
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1. If N is a ring, (N) is a ring.

2. If N is an algebra, f(N) is an algebra.
3. If N is a B-algebra, f (N) is a B-algebra.
4. REM)) = FHRDR)).

5. (M) = FI(BIN)).

* Let R be a ring of sets. If the operations A A B and 4 n B are regarded
as addition and multiplication, respectively, then % is a ring in the usual
algebraic sense. All its elements satisfy the conditions

(%) a-+a=0, ad =a.

A ring all of whose elements satisfy the conditions (*) is called a Boolean
ring. Every Boolean ring can be realized as a ring of sets with the opera
tions A A B and 4 n B (Stone). x

EXERCISES

1. Suppose that R is a ring of subsets of a set X and that ¥ is the col
lection of those sets E € X for which either E € R orelse X\ E € %
Show that ¥ is an algebra with unit X.

2. Determine the minimal ring (&) in each of the following cases:

(a) for a fixed subset A C X, © = {4};

(b) for a fixed subset A € X, & = {B:A € B C X].

3. Let © be a semi-ring in X, and let R(S) be the minimal ring ove:
©&. Then the minimal ¢-rings over & and R(S) coincide.

4. For each of the following sets what are the o-ring and the Borel alge
bra generated by the given class of sets &?

(a) Let T be a one-to-one onto transformation of X with itself. A sub
set A C X is called invariant if © € A implies that T(z) € A and T7*(z)
€ A. Let & be the collection of invariant subsets of X. )

(b) Let X be the plane and let & be the collection of all subsets of the
plane which can be covered by countably many horizontal lines.

1) its domain of definition S, is a semi-ring;
2) its values are real and nonnegative;
3) it is additive, that is, if

\u. = Cw xAL«
is a finite partition of a set A € S, in sets Az € S,, then
r(A) = 2 u(4p).

REMARK. Since § = @ u 0, it follows that u(8) = 2u(8), i.e., u(8) = 0.
The following two theorems on measures in semi-rings will be applied

repeatedly in the sequel.
TrEEOREM 1. Let u be a measure defined on a semi-ring S, . If

kﬁuv....kﬁsukﬁ € Mtu

where the sets Ay are pairwise disjoint subsets of A, then
D1 n(Ar) < n(4).

Proof. Since S, is a semi-ring, in view of Lemma 1 of §34 there exists a
partition

A= Ui, 4, (s=n, 4 € 8,)

in which the first n sets coincide with the given sets 4, ---, 4, . Since
the measure of an arbitrary set is nonnegative,

S n(Ar) < i n(4r) = u(4).
TuroreM 2. If Ay, -++, An, A € S,and A C Uiy Ay, then
p(A) < i n(Ar).

Proof. According to Lemma 2 of §34 there exist pairwise &muomba. sets
By, -+, B; € 8, such that each of the sets 4, 4,, - -, A, can be written
as a union of some of the sets B, :

A =VUieu, Bi;  Ar = Usem, B, (1Lk<Zn)

where each index s € M, is an element of some M; . Consequently, every
term of the sum

~ 1 \0§86. Measures on semi-rings. Extension of a measure on a semi-ring to
\ the minimal ring over the semi-ring

In §33, to define a measure in the plane we started with the measure
(area) of rectangles and then extended this measure to a more general
class of sets. The results and methods of §33 are completely general and
can be extended, with no essential changes, to measures defined on ar-
bitrary sets. The first step in the construction of a measure in the plane
is the extension of the measure of rectangles to elementary sets, that is, te
finite unions of pairwise disjoint rectangles.

We consider the abstract analogue of this problem in this section.

DermviTION 1. A set function u(A4) is called a measure if

ey b(Bs) = n(4)
appears at least once in the double sum
Db Deen (By) = Dicaw(4).
Hence,
p(A) £ Xk u(4e).
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In particular, if » = 1, we obtain the

CoroLLArY. If A © A, then n(A) < u(4").

DrermiTioN 2. A measure u(A) is said to be an extension of a measur
m(A) if S, & Sy and if u(4) = m(4) for every A € S,,.

The primary purpose of this section is to prove the following theorem.

Taeorem 3. Every measure m(A) has a unique extension u(A) whose
domasin of definition is the ring R(S,). .

Proof. For each set A € R(S,) there exists a partition

(1) A =Ui, B, (B € 8n)
(§34, Theorem 3). We set, by definition,
(2) w(4) = 225 m(By).

It is easily seen that the value of u(4) defined by (2) is independent of
the choice of the partition (1). In fact, let

A=ULB;= ~1C; (B; € Sn,Ci € Sp)

be two partitions of 4. Since all the intersections B; n C; belong to S,
in view of the additivity of the measure m,

Zim(B) = X0 Yiam(BinC) = 3 m(Cy).

The measure u(A) defined by (2) is obviously nonnegative and additiv
This proves the existence of an extension #(4) of the measure m. To prov
ts uniqueness, we note that, according to the definition of an extension,
if A = U;; B, , where the B, are disjoint elements of S,, , then

WH(A) = 20 u¥(Be) = Xm(Bi) = u(A)

for an arbitrary extension u* of m over R(Sm). This proves the theorem.

The relation of this theorem to the constructions of §33 will be full
clear if we note that the set of all rectangles in the plane is a semi-ring
that the area of the rectangles is a measure in the sense of Def. 1 and tha
the class of elementary plane sets is the minimal ring over the semi-rin
of rectangles.

2 Let X be the plane, and let ©@ = {4:4 = the set of all (, y) such
that @ < z < b,y = ¢}, ie., & consists of all the horizontal right half-
losed line segments. Define u(4) = b — a.
(a) Show that & is a semi-ring.
(b) Show that u is a measure on &.
3. Let u be a measure on a ring .
(a) For A, B € % show that u(4 u B) = u(4) + u(B) — u(4 n B).
(b) For A, B, C € % show that

w(AuBuC) = p(4) + p(B) + u(C)
—(AnB)+u(BnC)+p(Cnd)]+p(AnBnC).
(¢) Generalize to the case 4, ---, A, € R.

§36. Extension of the Jordan measure

The concept of Jordan measure is of historical and practical interest,
but will not be used in the sequel.

In this section we shall consider the general form of the process which
n the case of plane figures is used to pass from the definition of the areas
f finite unions of rectangles with sides parallel to the coordinate axes to
he areas of those figures which are assigned definite areas in elementary
eometry or classical analysis. This transition was described with com-
lete clarity by the French mathematician Jordan about 1880. Jordan’s
asic idea, however, goes back to the mathematicians of ancient Greece
nd consists in approximating the “measurable” sets A by sets A’ and 4”
uch that

A'C ACA.

Since an arbitrary measure can be extended to a ring (§35, Theorem 3 )

t is natural to assume that the initial measure m is defined on the ring

R = R(Sm). We shall make this assumption in the rest of this section.
Dermirion 1. We shall say that a set A is Jordan measurable if for every
> 0 there are sets A’, A” € R such that

A'CACA”, mA"\4)<e

EXERCISES

1. Let X be the set of positive integers, & the set of all finite subsets o
X. Suppose that > w_; u, is a convergent series of positive numbers. Fo
A € & define u(A) = X u, (n € A). Prove that u is a measure. Now
suppose that P is the set of all subsets of X and that u is defined as above |
for finite subsets of X, but that u(A) = 4o if A is infinite. p is still fi-
nitely additive [although u(A) may equal + o for some sets]. How-
ever, u is not completely additive (see §37, Def. 1). ,

TarorEM 1. The collection R* of sets which are Jordan measurable is a
ring.

For, suppose that A, B € %*; then for arbitrary ¢ > 0 there exist sets
,A”, B', B” € %R such that

A'C AcCAY, B ' cBcCcB
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m(A” X\ 4') < ¢/2, m(B” \ B') < ¢/2.

Hence
(1) A"uB' S AuBCA” y B,
(2) A"\ B" CAN\ BC A"\ B.
Since

(A” uB") \ (4’ u B') C (A” 4" u (B” \B"),
m{(4” u B") \ (4" u B")] < m[(4” \ 4’) v (B" \ B")]

® < m(A7 N\ A) + m(B” \_B)
< €e2+ €2 =c
Since
(47 \B')\ (4" \ B") C (47 \ 4") u (B" \_B),
@ "ATNBYN N B < mar N\ ) o (BN )

< m(4” N 4') + m(B” \ B')
<e24 ¢2=c

Inasmuch as e > 0 is arbitrary and the sets 4’ y B’ »A” uB”, A"\ _B",

A” \ B’ are elements of %, (1), (2), (3) and (4) imply that A v B and
A\ B are elements of %7*,

Let 9 be the collection consisting of the sets A for which there is a set

B € % such that B D 4. For arbitrary A € I we define
E(A) = inf {m(B); B D 4},
u(4) = sup {m(B); B C A}.

The functions 4(A) and u(A) are called the outer and inner measures
respectively, of the set 4.
Obviously,

It

. w(4) < a(4).
THEOREM 2. The ring R* coincides with the system of all sets A € M such
that u(A) = g(A4).
Proof. If
B(4) = u(A),
then

§36] EXTENSION OF JORDAN MEASURE 25"

B(A) — u(4) =k >0,
and
m(4") < u(4), m(4") = w(4),
m(A” N\ A") = m(A4”) —m(4’) > h>0

for arbitrary A’, A” € R such that A’ € A C A”. Hence A ¢ R*.
Conversely, if

w(4) = i(4),
then for arbitrary e > 0 there exist A’, A” € R such that
A'CAcCA”,
k(4) — m(4") < ¢/2,
m(A”) — g(4) < ¢/2,
m(A” \ 4A") = m(4”) — m(4’) < ¢,

ie, A € R*.
The following theorem holds for sets of 9.
TarorEM 3. If A C Up Ay, then i(A) < D ora i(4sr).
Proof. Choose an A, such that

A, C A,  m(AY) < a(4s) + €/2
and let A’ = Uz—_; 4. Then
w4 € ThamAd) € S a4y + 6
a(4) < Mwna B(Ar) + ¢
since e is arbitrary, g(4) < Y .p i(4z).
TueorEM 4. IT A, C A (1 <k <n)and A;n A; = @, then
w(A) > 20 u(Ar).

Proof. Choose Ay’ & Aj such that m(4y') > w(4r) — ¢/2° and let
A" = Upy A Then A/ n A/ = @ and

m(A’) = Tiam(Ad) = Tu u(ds) — e

Since A’ C A, u(A) > m(A’) > D>r u(4r) — e Since € > 0 is ar-
bitrary, u(4) > MUM.L u(Ax). .
We now define the function p with domain of definition

S, = R*
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as the common value of the inner and outer measures:
p(4) = u(4) = 5(4).
Theorems 3 and 4 and the obvious fact that

B(4) = u(4) = m(4) (4 € )

imply

THEOREM 5. The function u(A) is @ measure and is an extension of the
measure m.

The construction we have discussed above is applicable to an arbitrary
measure m defined on a ring.

The oozmo.aon Smy = © of elementary sets in the plane is essentially
connected with the coordinate system: the sets of the collection & consist
of A.&.m rectangles whose sides are parallel to the coordinate axes. In the
transition to the Jordan measure

IO = j(my)

M.\Em dependence on the choice of the coordinate system vanishes: if {Z1, %)
Is a system of coordinates related to the original coordinate system {z; , x5}
by the orthogonal transformation

Ti=x1c08a+ Tysina + a,
%y = —msina + 2, cos a + a,,
we obtain the same Jordan measure
@ _ . o
J7 = j(my) = j(ms),

where 7, denotes the measure constructed by means of rectangles with
sides parallel to the axes #; , &, . This fact is justified by the following gen-
eral theorem:

. THEOREM 6. In order that two Jordan extensions u; = Jj(my) and ug =
J(ms) of measures my and m, defined on rings R, and Ry cotncide, it is neces-
sary and sufficient that

8, mi(4) = p(4A) on Ry,
R 8, me(A) = m(4) onR,.

The necessity is obvious. We shall prove the sufficiency.
Suppose that 4 € S, . Then there exist A’, A” € %, such that

A'CAcCA’, m(A") — m(4’) < ¢/3,

and m;i(4’) < wm(A) < m(A”). By hypothesis, ps(4’) = A’
wa(A") = macAm, p2(4’) m1(4") and
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-

In view of the definition of the measure u. there exist sets B’, B” € R.
such that

u(4’) — my(B') < ¢/3;
ma(B”) — ua(4”) < ¢/3.

A' DB,
B” M\»\s.

Hence

B ' Cc A C B,

and, obviously,
me(B”) — my(B’) < e
Since ¢ > 0 is arbitrary, A € 8,, ; and the relations
p(B') = mao(B') < pa(4) < mo(B”) = m(B")

imply that us is an extension of . Similarly, one shows that y; is an ex-
tension of us , and therefore

p2(4) = m(4).

This proves the theorem.

Now, to show the independence of the Jordan measure in the plane of
the choice of the coordinate system we need merely show that the set ob-
tained from an elementary set by a rotation through an angle o is Jordan
measurable. It is left to the reader to carry out this proof.

If the original measure m is defined on a semi-ring instead of a ring, it
is natural to call the measure

j(m) = j(r(m))

obtained by extending m over the ring R(S.) and then extending the
latter to a Jordan measure, the Jordan extension of m.

EXERCISES

1. If AB is a line segment in the plane, then J @(4B) = 0.

2. Let ABC be a right triangle in the plane, with AB perpendicular to
BC and with AB and BC parallel to the z- and y-axes, respectively.

a) Show that ABC is J®-measurable.

b) Using the invariance of J® under translation and reflection in an
axis, show that J®(ABC) = 1(AB)(BC).

3. a) It follows from Ex. 2 and the text that any triangle is J @ _meas-
urable and that its J®-measure is the classical area.

b) Show, therefore, that a regular polygon is J ®_measurable and re-
ceives its classical area.
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c) It follows now that a circle, i.e., a closed disk, is J®-measurable.
4. Show that the plane set A = {(z, y):2" 4+ ¢ < 1, x, y rational} is
not J®-measurable.

§37. Complete additivity. The general problem of the extension of measures

It is often necessary to consider countable unions as well as finite unions.
Therefore, the condition of additivity we imposed on a measure (§34, Def.
1) is insufficient, and it is natural to replace it by the stronger condition
of complete additivity.

DermirrioN 1. A measure p is said to be completely additive (or o-addi-
tive) if A, Ay, -+, An, -+ € 8., where S, is the collection of sets on
which u is defined, and

4=U,4,, Aind; =0 (¢ #j)
imply that
p(A) = 2701 u(4,).

The plane Lebesgue measure constructed in §33 is o-additive (Theorem
9). An altogether different example of a os-additive measure may be con-
structed in the following way. Let

X = m&uuguv ...u
be an arbitrary countable set and let the numbers p, > 0 be such that
o%ﬂw Dn = 1.

The set S, consists of all the subsets of X. For each 4 C X set

p(4) = Mua..?» Pn .

It is easy to verify that u(4) is a o-additive measure and that w(X) = 1.
This example appears naturally in many problems in the theory of proba-
bility.

We shall also give an example of a measure which is additive, but not
o-additive. Let X be the set of all rational points on the closed interval
[0, 1] and let S, consist of the intersections of X with arbitrary intervals
(a, b), [a, b], [a, b) or (a, b]. It is easily seen that S, is a semi-ring. For
each set Aap € 8, set_

r(Aa) = b — a.

Then p is an additive measure. It is not s-additive since, for instance,
u(X) = 1, but X is the union of a countable number of points each of
which has measure zero.

In this and the succeeding two sections we shall consider s-additive
measures and their s-additive extensions.
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THEOREM 1. If a measure m defined on a semi-ring S, is completely addi-
tive, then its extension p = r(m) to the ring R(Sn) s completely additive.
Proof. Suppose that

A €R(Sn), Bi€RWSw) (n=12---)
and that
A =Us_B,,
where B, n B, = @ (s 5 r). Then there exist sets 4 ; , Bni € S, such that
A=U;4;, B, = U; B,

where the sets on the right-hand sides of these equalities are pairwise dis-
joint and the unions are finite unions (§34, Theorem 3).

Let Crij = Bnin A; . It is easy to see that the sets C,;; are pairwise dis-
joint and that

NP.N. = C:. C—. Qs\»..e. )

B.i = U; C,;;.
Therefore, because of the complete additivity of m on S, ,
(1) m(4;) = 2on 22m(Crij),
(2) m(Bui) = 205 m(Caij);
and because of the definition of r(m) on R(S,),
(3) w(d) = 2;m(4;),
(4) u(Bn) = 2im(Bu).

Relations (1), (2), (3) and (4) imply that u(4) = >, u(B,). (The sums
over ¢ and j are finite sums, and the series over n converge.)

It could be proved that the Jordan extension of a s-additive measure is
s-additive, but it is not necessary to do so because it will follow from the
theory of Lebesgue extensions discussed in the next section.

THEOREM 2. If a measure p is o-additive and A, Ay , -+ , A, , oo €8y,
then

AcUi. 4,
implies that
r(4) < 2 2 u(4,).
Proof. Because of Theorem 1 it is sufficient to carry out the proof for a
measure defined on a ring, since the validity of Theorem 2 for u = r(m)

immediately implies its applicability to the measure m. If S, is a ring, the
sets
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B, = (A nA4,)\\ Ui 4,
are elements of S, . Since
4 =U7,B,,
and the sets B, are pairwise disjoint,
w(4d) = 200 u(Ba) € Yeoiu(4,).

In the sequel, we shall consider only c-additive measures, without men
tioning this fact explicitly.

‘ws nkﬁ,av

* We have considered two ways of extending measures. In extending a
measure m over the ring R(S,.) in §35 we noted the uniqueness of the ex-
tension. The same is true for the Jordan extension Jj(m) of an arbitrary
measure m. If a set A is Jordan measurable with respect to a measure m
(that is, 4 € Sjim), then u(4) = J (4), where u is an arbitrary extension
of m defined on 4 and J = j(m) is the Jordan extension of m. It can be
proved that an extension of m to a collection larger than S;(m) is not unique.
More precisely, the following is true. Call a set A a set of unicity for a meas-
ure m if .

1) there exists an extension of m defined on A;

2) for two such extensions y; and K2,

m(4) = ps(4).

Then the following theorem holds.

The set of sets of unicity of a measure m coincides with the collection
of Jordan measurable sets relative to m, 1.e., the collection of sets S;q, .

However, if we consider only s-additive measures and their (o-additive)
extensions, then the collection of sets of unicity will, in general, be larger.

Since we shall be exclusively occupied with o-additive measures in the
sequel, we introduce

DErFINITION 2. A set 4 is said to be a set of o-unicity for a o-additive
measure p if

1) there exists a o-additive extension \ of udefined on A (thatis, 4 € §);

2) if A, A are two such o-additive extensions, then :

M(4) = N(4).

. If .\# is a set of g-unicity for a s-additive measure u, then the definition
implies that if there is a s-additive extension A(A) of u defined on 4, it is
unique. *

EXERCISES

1. Suppose u is a completely additive measure on the collection of all
subsets of a countable set X. Show that p(4) = 0forall A C X if, and
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\\

only if, u({z}) = Oforall z € X, ie., u vanishes on every set consisting of
a single point.

2. If X is a countable set, & the class of all subsets of X and p a com-
pletely additive measure defined on &, then u must necessarily have the
form of the second example after Def. 1 in §37, where, however, the p, need
only satisfy the conditions p, > 0, > p. < .

3. Show that the measure defined in Ex. 2, §35 is completely additive.
Hint: Imitate the procedure used in §33, Theorem 2.

4. Let © be the semi-ring of left-closed right-open intervals on the line:
& = {[a, b)}, let F(t) be a nondecreasing left continuous real-valued func-
tion defined on the line and let ur be the Lebesgue measure defined in Re-
mark 4 at the end of §33. Show that ur is completely additive by following
a procedure analogous to that of Ex. 3 above. It will be necessary to show
the following: Suppose that @ < b. For € > 0 there exist ¢ and d such that

alc<d<b IledlClabd)

and
re(le, @) = F(d) — F(c) > F(b) — F(a) — ¢ = pe([a, D)) — e
Similarly, there exist e, f such that e < a < b < f, [a, b) C (e, f) and
re(le, f)) = F(f) — F(e) < F(b) — F(a) + € = pr([a, b)) + &

§38. The Lebesgue extension of a measure defined on
a semi-ring with unity

Although the Jordan extension applies to a wide class of sets, it is never-
theless inadequate in many cases. Thus, for instance, if we take as the ini-
tial measure the area defined on the semi-ring of rectangles and consider
the Jordan extension of this measure, then so comparatively simple a set as
the set of points whose coordinates are rational and satisfy the condition
&+ QM < 1 is not Jordan measurable.

The extension of a s-additive measure defined on a semi-ring to a class
of sets, which is maximal in a certain sense, can be effected by means of the
Lebesgue extension. In this section we consider the Lebesgue extension of a
measure defined on a semi-ring with a unit. The general case will be con-
sidered in §39.

The construction given below is to a considerable extent a repetition in
abstract terms of the construction of the Lebesgue measure for plane sets
in §33.

Let m be a o-additive measure defined on a semi-ring S,, with a unit E.
We define on the system & of all subsets of E the functions u*(4) and
ux(A) as follows.

DermirioN 1. The oufer measure of a set A C E is

4
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w*(4) = inf {3 . m(B.); A € U, B,},

where the lower bound is extended over all coverings of A by countable
(finite or denumerable) collections of sets B, € S,, .
DErFmiTion 2. The inner measure of a set A C E is

px(4) = m(E) — p*(E\ 4).

Theorem 2 of §35 implies that ux(4) < u*(4).
Dernirion 3. A set A C E is said to be (Lebesgue) measurable if

px(4) = p*(4).

If A is measurable, the common value of u4(4) = u*(4) is denoted by
u(A4) and called the (Lebesgue) measure of A.

Obviously, if A is measurable, its complement E \\ 4 is also measurable.

Theorem 2 of §37 immediately implies that

px(4) < p(4) < p*(4)

for an arbitrary c-additive extension u of m. Therefore, for a Lebesgue
measurable set 4 every o-additive extension u of m (if it exists) is equal to
the common value of ux(4) = u*(4). The Lebesgue measure is thus the
o-additive extension of m to the collection of all sets measurable in the
sense of Def. 3. The definition of measurable set can obviously also be
formulated as follows:

DrrimNiTION 3’. A set A C E is said to be measurable if

r*(A) + p*(E\4) = m(E).

It is expedient to use together with the initial measure m its extension
m’ = r(m) (see §35) over the ring R(S,.). It is clear that Def. 1 is equiva-
lent to

Dermarion 1’. The outer measure of a set A4 is

w*(4) = inf {3, m'(B.); A € U, By} [B." € R(Sw)].

In fact, since m’ is o-additive (§37, Theorem 1), an arbitrary sum
> . m/(B,'), where B,’ € R(8x), can be replaced by an equivalent sum

MUS.Nn SsA.m:wv Awsw m M§v~

where

B, = U, B, B..nB,; =0 (z = j).

The following is fundamental for the sequel.
TaeorEM 1. If

AcU,4,,
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where {A,} is a countable collection of sets then,

p*(A4) < 2 u*(4,).

TaEOREM 2. If A € R, then ux(A) = m'(A) = p*(4), i.e., all the sets
of R(8n) are measurable and their outer and inner measures coincide with m’.

THEOREM 3. A set A is measurable if, and only if, for arbitrary e > 0
there exists @ set B € R(S,) such that

p*(AAB) < e

These propositions were proved in §33 for plane Lebesgue measure (§33,
Theorems 3-5). The proofs given there carry over verbatim to the general
case considered here, and so we shall not repeat them.

TarorEM 4. The collection I of all measurable sets is a ring.

Proof. Since

Aijnd; = A\ (41 \ 4),

A1udy = EX[(E\ 41) n (E\ 4y)],
t is sufficient to prove the following. If 4;, A, € I, then

A=A\ 4, € M.
Let A; and A, be measurable; then there exist By, By € %(S,) such that
w¥*(4: A By) < ¢/2, r*(4: A By) < ¢/2.
Setting B = B, \ Bz € R(S,) and using the relation
(41 \\4:2) A (B1\\ B:) C (41 A By) u (4; A By),
we obtain
p*(A AB) <e

Hence, 4 is measurable.

REMARK. It is obvious that E is the unit of the ring M, so that the latter
is an algebra.

TaEOREM 5. The function u(A) is additive on the set MM of measurable
sets.

The proof of this theorem is a verbatim repetition of the proof of Theorem
7, §33. A

TaEOREM 6. The function u(A) is o-additive on the set M of measurable
sets.

Proof. Let

kﬁ = Cuﬂw x&.:
By Theorem 1,

(4,4: €M, Aind;=0 if 7).
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(1) wH(A) £ Zan(4a),
and by Theorem 5, for arbitrary N,
p*(A) > p*(Un Aa) = D0 u*(4,).
Hence,
(2) B*A) 2 2au(4a).

The theorem follows from (1) and (2).

We have therefore proved that the function u(A4) defined on 9t possesses
all the properties of a s-additive measure.

This justifies the following

DermNitioN 4. The Lebesgue extension p = L(m) of a measure m(A) is
the function u(A) defined on the collection S, = I of measurable sets
and coinciding on this collection with the outer measure u*(4).

In §33, in considering plane Lebesgue measure, we showed that not
only finite, but denumerable unions and intersections of measurable sets
are measurable. This is also true in the general case, that is,

TaBoREM 7. The collection Mt of Lebesgue measurable sets is a Borel algebra
with unit E. ’

Proof. Since
D:»@ﬁ = @/CS A.@/NAQ_V‘

and since the complement of a measurable set is measurable, it is sufficient
to prove the following: If A, , A2, -+ ,A,, -+ € M, thend = U, 4, € I
The proof of this assertion is the same as that of Theorem 8, §33, for plane
sets.

As in the case of plane Lebesgue measure, the o-additivity of the measure
implies its continuity, that is, if u is a c-additive measure defined on a
B-algebra, and 4; D 4; D -+ 2 A, 2 --- is a decreasing sequence of
measurable sets, with

4=0N,,4,,
then

#(A) = limg.y n(44);

andif 4, C 4, C --- C A, C --- is an increasing sequence of measura-
ble sets, with

A=U,4,,
then
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—
p(4) = lim,.e u(4,).
The proof of this is the same as that of Theorem 10, §33, for plane measure.

* 1. From the results of §37 and §38 we easily conclude that every Jor-
dan measurable set A is Lebesgue measurable, and that its Jordan and
Lebesgue measures are equal. It follows immediately that the Jordan ex-
tension of a o-additive measure is s-additive.

2. Every Lebesgue measurable set A is a set of unicity for the initial
measure m. In fact, for arbitrary e > 0 there exists a set B € ® such that
w*(A A B) < e For every extension \ of m defined on 4,

A(B) = m'(B),
since the extension of m on ® = R(S.) is unique. Furthermore,
MAAB) Su*(AAB) < ¢
consequently,
INA) —m'(B)| < e
Hence,
[M(4) — M(4) | < 26
for any two extensions M(4), N2(4) of m. Therefore,
M(4) = 2(4).

It can be proved that the class of Lebesgue measurable sets includes all
the sets of unicity of an initial measure m.

3. Let m be a s-additive measure defined on S, and let 9 = L(S) be
the domain of definition of its Lebesgue extension. It easily follows from
Theorem 3 of this section that if S, is a semi-ring such that

Sc 8 i,
then
L(8)) = L(S).%

EXERCISES

1. Show that the collection of subsets 4 of E for which u(4) = 0 or
w(E A) = 0 form a Borel algebra with E as a unit. This algebra is a
subalgebra of k.

2. With the notation of the text for A C F let
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m*(A) = sup {u*(B):B C 4}.

Show that m*(4) = u*(4).

3. Suppose that A € E. Then A € M if, and only if, A n B € I for
allB € S,..

4. For A C E, A € M if, and only if, for ¢ > 0 there exist sets By,
B, € Mt such that By € A C B, and u(B;\ B;) < e. [See §36, Def. 1
(Jordan measurability); also compare with §33, Ex. 6.]

5. For any A C E we have

a) u*(4) = inf {uB:A Cc B, B ¢ M.

b) ux(A) = sup {uB:B C A, B¢ M.
We see therefore that (abstract) Lebesgue measure is (abstractly) regular
(see §33, Ex. 5).

6. Let S, , Sm, be two semi-rings on X with the same unit E ; let my , my
be s-additive measures defined on Sy 5 Smy , Tespectively; and let u*, uo*
be the outer measures on the set of all subsets of £ defined by using m; , ms,
respectively. Then u*(4) = p*(A) for every A C E if, and only if,
m*(4) = my(4) for A € 8, and ue*(A) = my(A) for A € 8, . (See
§36, Theorem 6 for the analogous theorem on Jordan extensions.)

§39. Extension of Hm_oo.mmﬁa measures in the general case

If the semi-ring S, on which the initial measure m is defined has no unit,
the discussion of §38 must be modified. Def. 1 of the outer measure is re-
tained, but the outer measure u* is now defined only on the collection S,
of the sets A for which there exists a covering U, B,’ of sets of S,, with a
finite sum

> m(B,).

Def. 2 becomes meaningless. The lower measure can also be defined (in
several other ways) in the general case, but we shall not do so. It is more
expedient at this point to define a measurable set in terms of the condition
given in Theorem 3.

DermirioN 1. A set A4 is said to be measurable if for arbitrary € > 0
there exists a set B € R(S,) such that x*(4 A B) < e

Theorems 4, 5, 6 and Def. 4 of the preceding section remain true. The
existence of a unit was used only in the proof of Theorem 4. To reprove
Theorem 4 in the general ommmv it is necessary to show again that 4; , 4, € 90
implies that 4, u 4> € M. The proof of this is carried out in the same way
as for 4; \_A4; on the basis of the relation.

A\wu U xﬁuv A AWH 8] .mwv C A\MH A mwv U Akﬁn A ‘Wmv
If S» has no unit, Theorem 7 of §38 changes to
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THEOREM 1. For arbitrary initial measure m the collection M = Sim of
Lebesgue measurable sets is a o-ring; a set A = Up_; A, , where the sets 4,
are measurable, is measurable if, and only if, the measure u(UN_; A4,) is
bounded by a constant independent of N.

The proof of this theorem is left to the reader.

ReMARK. In our exposition the measure is always finite, so that the
necessity of the last condition of the theorem is obvious.

Theorem 1 implies the

CoroLLaRrY. The collection 9?4 of all sets B € M which are subsets of
afixedset A € 9 is a Borel algebra. For instance, the collection of all Le-
besgue measurable subsets (in the sense of the usual Lebesgue measure u*
on the real line) of an arbitrary closed interval [a, b] is a Borel algebra.

In conclusion we note yet another property of Lebesgue measures.

DEerFiNtTION 2. A measure p is said to be complete if u(A) = 0 and
A" € A imply that A’ € 8, .

It is clear that in that case u(A4’) = 0. It can be proved without difficulty
that the Lebesgue extension of an arbitrary measure is complete. This
follows from the fact that A’ C A and u(A4) = 0imply that p*(4’) = 0,
and from the fact that an arbitrary set C' for which #*(C) = 0is measura-
ble, since § € R and

w*(C A @) = u*(C) = 0.

* Let us indicate a connection between the method of constructing the
Lebesgue extension of a measure and the method of completing a metric
space. To this end, we note that m’(4 A B) can be thought of as the dis-
tance between the elements 4, B of the ring R(Sx). Then R(S,.) becomes
a metric space (in general, not complete) and its completion, according to
Theorem 3 of §38, consists precisely of all the measurable sets. (In this
connection, however, the sets 4 and B are not distinet, as points of a
metric space, if (4 A B) = 0.) %

EXERCISES

1. With the notation of the last paragraph of this section show that u
is a continuous function on the metric space .



Chapter VI
MEASURABLE FUNCTIONS

§40. Definition and fundamental properties of measurable functions

Let X and Y be two sets and suppose that & and &' are classes of sub-
sets of X, Y, respectively. An abstract function y = f(z) defined on X,
with values in Y, is said to be (&, &')-measurable if A € & implies that
i(4) € @.

For instance, if both X and Y are the real line D' (so that f(z) is a real-
valued function of a real variable), and &, &’ are the systems of all open
(or closed) subsets of D', then the above definition of measurable function
i reduces to the definition of continuous function (see §12). If & and &'

— are the collections of all Borel sets, then the definition is that of B-meas-

urable (Borel measurable) functions.

In the sequel our main interest in measurable functions will be from the
point of view of integration. Fundamental to this point of view is the con-
cept of the u-measurability of real functions defined on a set X, with &
the collection of all u-measurable subsets of X, and & the class of all B-gets
on the real line. For simplicity, we shall assume that X is the unit of the
domain of definition S, of the measure u. Since, in view of the results of
§38, every s-additive measure can be extended to a Borel algebra, it is
natural to assume that S, is a Borel algebra to begin with. Hence, for real
functions we formulate the definition of measurability as follows:

DermiTioN 1. A real function f(z) defined on a set X is said to be p-
measurable if

Fi(4) € 8,

for every Borel set A on the real line.

We denote by {x:Q} the set of all z € X with property Q. We have the
following .

THEOREM 1. In order that a function f(x) be p-measurable it is necessary

— % and sufficient that for every real c the set {x:f(x) < c} be u-measurable (that

/

18, that this set be an element of S,).
Proof. The necessity of the condition is obvious, since the half-line
(— e, ¢) is a Borel set. To show the sufficiency we note first that the Borel

—__ closure B(Z) of the set of all the half-lines (— ©, ¢) coincides with the

/ set B' of all Borel sets on the real line. By hypothesis, (Z) < S, . But
then

F(B(2)) = B(f (2)) € B(S,).
38
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However, B(8,) = 8, , since, by hypothesis, S, is a B-algebra. This proves
the theorem.

TeEOREM 2. The pointwise limit function of a sequence of u-measurable
functions s u-measurable.

Proof. Suppose that f.(z) — f(z). Then

(1) {z:f(z) < ¢} = U Uy Nus {21 fm(z) < ¢ — 1/K}.
For, if f(z) < ¢, there exists a k such that f(z) < ¢ — 2/k; furthermore,
for this k there is a sufficiently large n such that

fm(z) <c¢—1/k

for m > n. This means that z is an element of the set defined by the right-
hand side of (1). :

Conversely, if z is an element of the right-hand side of (1), then there
exists a & such that

fum(z) < ¢ — 1/k
for all sufficiently large m. But then f(z) < ¢, that is, « belongs to the set

on the left-hand side of (1).
If the functions f,(z) are measurable, the sets

{zifm(z) <c— 1/k)
are elements of S, . Since S, is a Borel algebra, the set

{z:f(z) < ¢}

also belongs to 8, in virtue of (1). This proves that f(z) is measurable.

For the further discussion of measurable functions it is convenient to
represent each such function as the limit of a sequence of simple functions.

Dermrion 2. A function f(z) is said to be simple if it is u-measurable
and if it assumes no more than a countable set of values.

It is clear that the concept of simple function depends on the choice of
the measure u.

The structure of simple functions is characterized by the following the-
orem:

TuEOREM 3. A funciion f(x) which assumes no more than a countable set
of distinct values

QHu o.ov@!.v ..

is u-measurable if, and only if, all the sets

Ao = {2:f(z) = ya}

are u~-measurable.
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Proof. The necessity of the condition is clear, since each A, is the in-
verse image of a set consisting of one point ¥, , and every such set is a
Borel set. The sufficiency follows from the fact that, by hypothesis, the
inverse image f'(B) of an arbitrary set B C D' is the union Uyues An of
no more than a countable number of measurable sets A4, , that is, it is
measurable.

The further use of simple functions will be based on the following the-
orem:

THEOREM 4. In order that a function f(z) be p-measurable it is necessary
— and sufficient that it be representable as the limit of a uniformly convergent
i sequence of simple functions.

Proof. The sufficiency is clear from Theorem 2. To prove the necessity
we consider an arbitrary measurable function f(z) and set f.(z) = m/n,
where m/n < f(z) < (m + 1)/n (m an integer, n a natural number). It
is clear that the functions f.(z) are simple; they converge uniformly to
f(x) as n — oo, since | f(z) — fu(z) | < 1/n.

THEOREM 5. The sum of two p-measurable functions is u-measurable.

Proof. We prove the theorem first for simple functions. If f(z) and g(x)
are two simple functions assuming the values

.\.Hu ...u\.au ceey,

QHu ..-uQ§u ceey,

respectively, then their sum f(z) + g(z) can assume only the values & =
fi + g;i, where each of these values is assumed on the set

2)  {zh(2) = B} = Uppgm(foif(z) = finfeig(z) = g3).

The possible number of values of 4 is countable, and the corresponding set
{z:h(x) = h} is measurable, since the right side of (2) is obviously a meas-
urable set.

To prove the theorem for arbitrary measurable functions f(z) and g(z)
we consider sequences of simple functions {f,(z)} and {g.(z)} converging
to f(z) and g(x), respectively. Then the simple functions f,(z) + g ()
converge uniformly to the function f(z) + g(z). The latter, in view of
Theorem 4, is measurable.

THEOREM 6. A B-measurable function of a p-measurable function is
u-measurable. .

Proof. Let f(x) = ¢[¥(x)], where ¢ is Borel measurable and ¢ is u-meas-
urable. If A C D' is an arbitrary B-measurable set, then its inverse image
A" = ¢'(A) is B-measurable, and the inverse image A” = ¢ 7'(4’) of A’
is p-measurable. Since f'(4) = A”, it follows that f is measurable.

Theorem 6 is applicable, in particular, to continuous functions ¢ (they
are always B-measurable).
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THEOREM 7. The product of u-measurable functions is u-measurable.

Proof. Since fg = 1[(f + ¢)* — (f — ¢)?, the theorem follows from
Theorems 5 and 6 and the fact that ¢() = ¢ is continuous.

Exercise. Show that if f(x) is measurable and nonvanishing, then
1/f(z) is also measurable.

In the study of measurable functions it is often possible to neglect the
values of the function on a set of measure zero. In this connection, we
introduce the following

Dermirion. Two functions f and g defined on the same measurable set
E are said to be equivalent (notation: f ~ g) if

wa:f(z) = g(z)} = 0.

We say that a property is satisfied almost everywhere (abbreviated a.e.)
on F if it is satisfied at all points of E except for a set of measure zero.
Hence, two functions are equivalent if they are equal a.e.

TuEOREM 8. If two functions f and g, continuous on a closed interval E,
are equivalent, they are equal.

Proof. Let us suppose that f(z0) = g(0), i.e., f(zo) — g(x0) = 0. Since
f — g is continuous, f — g does not vanish in some neighborhood of z, .
This neighborhood has positive measure; hence

wa:f(z) # g(z)} > 0,

that is, the continuous functions f and g cannot be equivalent if they differ
even at a single point.

Obviously, the equivalence of two arbitrary measurable (that is, in
general, discontinuous) functions does not imply their equality; for in-
stance, the function equal to 1 at the rational points and 0 at the irrational
points is equivalent to the function identically zero on the real line.

THEOREM 9. A function f(x) defined on a measurable set E and equivalent
on E to a measurable function g(x) is measurable.

In fact, it follows from the definition of equivalence that the sets

{z:f(z) > d},

may differ only on a set of measure zero; consequently, if the second set is
measurable, so is the first.

{x:g(z) > a}

* The above definition of a measurable function is quite formal. In 1913
Luzin proved the following theorem, which shows that a measurable func-
tion is a function which in a certain sense can be approximated by a con-
tinuous function.

Luziv’s TeEOREM. In order that a function f(x) be measurable on a closed
interval [a, ] it is necessary and sufficient that for every ¢ > O there exist a
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Junction o(x) continuous on [a, b] such that
wzif(z) = o(z)} < e

In other words, a measurable function can be made into a continuous
function by changing its values on a set of arbitrarily small measure. This
property, called by Luzin the C-property, may be taken as the definition of
a measurable function.x

EXERCISES

1. For A C X let X4 be the characteristic function of A defined by
xa(z) = lifz € A, xa(z) = 0if 2 € X\ A.

a) xanp() = xa(x)xs(2),
Xaup(z) = xa(®) + x5(x) — xa(2)xs(x),
x4a5(z) = | xa(z) — xa(z) |,
x5(z) =0, xz(2) =1,
xa(z) < xs(z) (x € u.mv if, and only if, A C B.

b) xa(x) is p-measurable if, and only if, 4 € S, .

2. Suppose f(x) is a real-valued function of a real variable. If f(z) is
nondecreasing, then f(z) is Borel measurable.

3. Let X = [a, b] be a closed interval on the real line. If f(x) is defined
on X and X = Ui E;, where each E; is a subinterval of X,E;nE;=90
and f(E;) = y., then we call f a step function.

Suppose that f is nondecreasing (or nonincreasing) on X. Show that
all the functions of the approximating sequence of simple functions {fa} of
Theorem 4 of this section are step functions.

4. Assume that X = [a, b] contains a non-Lebesgue measurable set A.
Define a function f(x) on X such that | f(z) | is Lebesgue measurable, but
f(z) is not.

5. Two real functions f(z) and g(z) defined on a set X are both p-meas-
urable. Show that {z:f(x) = g(x)} is u-measurable.

6. Let X be a set containing two or more points. Suppose that
& = {@, X}. Describe all measurable functions.

7. Let f(x) be a u-measurable function defined on X. For ¢ real define
¢(t) = u({z:f(z) < #}). Show that ¢ is monotone nondecreasing, continu-
ous on the left, lim,,_, ¢(¢) = 0, and lim;.., ¢(¢) = u(X). ¢ is called the
distribution function of f(x).

§41. Sequences of measurable functions. Various types of convergence

Theorems 5 and 7 of the preceding section show that the arithmetical
operations applied to measurable functions again yield measurable func-
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tions. According to Theorem 2 of §40, the class of measurable functions,
unlike the class of continuous functions, is also closed under passage to a
limit. In addition to the usual pointwise convergence, it is expedient to
define certain other types of convergence for measurable functions. In this
section we shall consider these definitions of convergence, their basic
properties and the relations between them.

DermrionN 1. A sequence of functions f,(z) defined on a measure space
X (that is, a space with a measure defined in it) is said to converge to a
Junction F(z) a.e. if

(1) limase fu(z) = F(z)

for almost all z € X [that is, the set of z for which (1) does not hold is of
Imeasure zero).

ExampLE. The sequence of functions fa(x) = (—z)" converges to the
function F(z) = 0 a.e. on the closed interval [0, 1] (indeed, everywhere
except at the point z = 1).

Theorem 2 of §40 admits of the following generalization.
THEOREM 1. If a sequence {f,(x)} of u-measurable functions converges to a
function F(z) a.e., then F(z) is measurable.

Proof. Let A be the set on which

lim,.. fa(z) = F(z).

By hypothesis, u(E \_4) = 0. The function F (x) is measurable on 4 by
Theorem 2 of §40. Since every function is obviously measurable on a set of
measure zero, F(z) is measurable on (£ \ 4); consequently, it is measur-
able on E.
ExERCISE. Suppose that a sequence of measurable functions fa(z) con-
verges a.e. to a limit function f(z). Prove that the sequence fa(z) converges
a.e. to g(z) if, and only if, g(z) is equivalent to f(=). )
The following theorem, known as Egorov’s theorem, relates the notions ~//
of convergence a.e. and uniform convergence.
THEOREM 2. Suppose that a sequence of measurable functions f.(z) con-
verges to f(z) a.e. on E. Then for every 6 > 0 there exists a measurable set
E; C E such that ,
1) u(Es) > w(E) — 8;
2) the sequence fn(x) converges to f(z) uniformly on Ej .
Proof. According to Theorem 1, f(z) is measurable. Set

B = Niza {w:] fi(e) — f(2) | < 1/m}.
Hence, E,™ for fixed m and n is the set of all z for which

[fi(e) — f(=) | < 1/m (¢ 2 n).

Let
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E" =U,E,"™ , TrEOREM 3. If a sequence of measurable functions f.(x) converges a.e. to a
. ” I function F(z), then it converges in measure to F(z). <
It is clear from the definition of the sets E,™ that Proof. Theorem 1 implies that the limit function F(z) is measurable.

E"CE"C.---CE"C--- Let A be the set (of measure zero) on which fa(z) does not converge to
: F(z). Furthermore, let

Ei(o) = {:|fa(z) = F(2) | = o}, Ru(e) = U, Eu(o),
M = N34 R.(0).
It is clear that all these sets are measurable. Since
Ri(0) D Ry(s) D -+,
and because of the continuity of the measure,

#(Ba(0)) — u(M) (n— )

for fixed m. Therefore, since « o-additive measure is continuous (see §38),
for arbitrary m and 6 > 0 there exists an n(m) such that

B(E™ \ Eam™) < 8/2".
We set
Nwm = 35 m\\;:&wu

and prove that E; is the required set. .
We shall prove first that the sequence {fi(z)} converges uniformly to
J(z) on E; . This follows at once from the fact that if z € E;, then

[fi(z) = f() | < 1/m (¢ 2 n(m))

for arbitrary m. We now estimate the measure of the set £\ E; . To do so
we note that u(E \ E™) = 0 for every m. In fact, if 7o € E \ E™, then

[ fi(z0) — f(0) | = 1/m

for infinitely many values of 4, that is, the sequence {f,(x)} does not con-
verge to f(x) at x = 2. Since {f.(x)} converges to f(x) a.e. by hypothesis,

w(EE") = 0.

We now verify that
(2) MCA.
In fact, if 2o ¢ A, that is, if
limy,e fo(20) = F(x),
then for every o > 0 there is an 7 such that
[fa(z0) — F(2) | < o,
that i o ¢ E,.(c); hence zo ¢ M.

Hence, But since u(4) = 0, it follows from (2) that u(M) = 0. Consequently,
K(E N Enm™) = u(E™ \ Eaem™) < 8/2™. #(Bn(0)) =0 (n— ).
Therefore Since E,.(¢) € R.(c), this proves the theorem.
? - It is easy to see by an example that convergence in measure does not
WENEs) = p(E\ Nu Enemy™) imply convergence a.e. For each natural number k define k functions
= p(Un (B Enem™))

&) (k)
.\.n y ©° v.ﬂw

on the half-open interval (0, 1] as follows:
1 (¢ —-1)/k <z <L i/k,

0 for the remaining values of z.

< MU§ tA@/m_iésv
< D2 5/2™ = 6.

Wy
This proves the theorem.. fi¥ (=)

* DEFINITION 2. A sequence of measurable functions f,(z) converges in
measure to a function F(z) if for every o > 0

limose p{z:| fa(z) — F(2) | 2 0} =0

Theorems 3 and 4 below relate the concepts of convergence a.e. and
convergence in measure.

Writing these functions in a sequence yields a sequence which, as is
easily verified, converges in measure to zero, but converges nowhere (prove
this!).

Exgrcise. Suppose that a sequence of measurable functions fa(z) con-
verges in measure to a limit function f(z). Prove that the sequence f,(z)
converges in measure to g(z) if, and only if, g(z) is equivalent to f(z).
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Although the above example shows that the full converse of Theorem 3
is not true, nevertheless we have the following

TrEOREM 4. Suppose that a sequence of measurable functions f.(x) con-
verges in measure to f(x). Then the sequence {f.(x)} contains a subsequence
{fn(2)} which converges a.e. to f(x).

Proof. Let e, -+, en, -+ be a sequence of positive numbers such that

limy,e €2 = 0,

and suppose that the positive numbers 4, +-- , 9., - - - are such that the
series

mt et
converges. We construct a sequence of indices
m<ng < -
s follows: n; is a natural number such that
w@t| fay(2) = f(2) | 2 &} <m

(such an n, necessarily exists). Then n, is chosen so that

x| fay(2) — f(2) | 2 & < 2 (n2 > m).
In general, n; is a natural number such that
e fa(z) — f(2) | 2 @} < m (me > ne—).

We shall show that the subsequence {f,,(z)} converges to f(z) a.e. In
fact, let

Ri = Upifo:| fu(2) — f(2) | > &}, Q@ =N%LR
Since
RiODR;,DR;yD :--DR,D -,

and the measure is continuous, it follows that u(R;) — u(Q).
On the other hand, it is clear that u(R:) < D i m , whence u(R;) — 0
as ¢ — o, Since u(R;) — 0,

w(@Q) = 0.

.

It remains to verify that

fu(z) — f(2)

for allz € E\_ Q. Suppose that o € E\ Q. Then there is an 4, such that
zo € Ry, . Then

2o ¢ (2] fuu(z) — f(2) | 2 &
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forallk > 4, i.e.

H

| fan(20) = F(20) | < €.
Since ¢, — 0 by hypothesis,

limg.se fa,(%0) = ().
This proves the theorem.x

EXERCISES

1. Egorov’s theorem does not yield the result that there exists a subset
E, C E with uE, = 0 and that the sequence {f,(z)} converges uniformly to
f(z) on E\ E;. However, prove that there exists a sequence {E;} of
measurable subsets of E such that u(E\ U; E;) = 0 and on each E; the
convergence is uniform.

2. Suppose that {f,}, f are measurable functions defined on E and for
€ > 0 there exists a measurable set F C E such that uF < e and {fa(2)}
converges uniformly to f(z) in E\ F. Show that { fa(z)} converges to
f(z) a.e.in E.

3. Let X be the set of positive integers, & the class of all subsets of X ,
and for A € & let u(4) be the number of points in A. Note that we are
here allowing sets of infinite measure. If x, is the characteristic function of
{1, ---, n}, then x.(z) converges everywhere to xx(z) = 1, but the con-
clusion of Egorov’s theorem does not hold.

4. A sequence of measurable functions f,(z) is said to be Sfundamental
in measure if for every ¢ > 0,

limpm e uf@:| fo(x) — fu(z) | > o} = 0.

Show that if {f.(2)} is fundamental in measure, then there exists a measur-
able function f(x) such that {f.(z)} converges in measure to f(z). Hint:
Use Theorem 4.

5. Let {A.} be a sequence of measurable sets and let x,, be the characteris-
tic function of A, . Show that the sequence { X} is fundamental in measure
if, and only if, limm,noe u(As AA,) = 0.

6. If {fu(x)}, {ga(2)} converge in measure to f(z) and g(z), respectively,
then {f.(z) + ga(2)} converges in measure to f(z) + g(z).



Chapter VII
THE LEBESGUE INTEGRAL

In the preceding chapter we considered the fundamental properties of
measurable functions, which are a very broad generalization of continuous
functions. The classical definition of the integral, the Riemann integral, is,
in general, not applicable to the class of measurable functions. For instance,
the well known Dirichlet function (equal to zero at the irrational points
and one at the rational points) is obviously measurable, but not Riemann
integrable. Therefore, the Riemann integral is not suitable for measurable
functions.

The reason for this is perfectly clear. For simplicity, let us consider func-
tions on a closed interval. To define the Riemann integral we divide the
interval on which a function f(z) is defined into small subintervals and,
choosing a point &, in each of these subintervals, form the sum

2ok f(&) Ay .

What we do, essentially, is to replace the value of f(x) at each point of
the closed interval Az, = [z, 4] by its value at an arbitrarily chosen
point & of this interval. But this, of course, can be done only if the values
of f(z) at points which are close together are also close together, i.e., if
f(2) is continuous or if its set of discontinuities is “not too large.” (A
bounded function is Riemann integrable if, and only if, its set of discon-
tinuities has measure zero.)

The basic idea of the Lebesgue integral, in contrast to the Riemann in-
tegral, is to group the points 2 not according to their nearness to each other
on the z-axis, but according to the nearness of the values of the function
at these points. This at once makes it possible to extend the notion of in-
tegral to a very general class of functions.

In addition, a single definition of the Lebesgue integral serves for func-
tions defined on arbitrary measure spaces, while the Riemann integral is
introduced first for functions of one variable, and is then generalized, with
appropriate changes, to the case of several variables.

In the sequel, without explicit mention, we consider a o-additive measure
#(A4) defined on a Borel algebra with unit X. The sets 4 C X of the al-
gebra are u-measurable, and the functions f(z)—defined for all z € X—
are also u-measurable.

§42. The Lebesgue integral of simple functions

We introduce the Lebesgue integral first for the simple functions, that is,
for measurable functions whose set of values is countable.

48
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Let f(x) be a simple function with values

Yy 3 Yny o Aw\ﬂ.wm@u.mows.ﬂm.“.v.
It is natural to define the integral of f () over (on) a set A4 as
W [ 1@ du = T yutez € 4,5) = ). v

We therefore arrive at the following definition.

DermviTion. A simple function f(z) is u-tniegrable over A if the series _/
(1) is absolutely convergent. If f(z) is integrable, the sum of the series g\
(1) is called the sntegral of f(z) over A.

In this definition it is assumed that all the Yn are distinct. However, it is
possible to represent the value of the integral of a simple function as a sum
of products cu(Bx) without assuming that all the ¢; are distinct. This can
be done by means of the

LEMMA. Suppose that A = Uy By, B;n B; = @ (i % 7) and that f(z)
assumes only one value on each set By . Then

@) \ £2) du = S cw(BY),

where the function f(x) is integrable over A if, and only if, the series (2) s
absolutely convergent.
Proof. Tt is easy to see that each set

4, = n&uﬁ € )AJ.\.A&V = N\L
is the union of all the sets B;, for which ¢, = Ya . Therefore,

2n Yuit(An) = Fn Yo Doy 1(Bi) = Xk cos(B).

Since the measure is nonnegative,

2o n [ #(4n) = Tl Yn| Do n(Bi) = i | x| u(By),

that is, the series ) Yan(A,) and Y, cen(Bz) are either both absolutely
convergent or both divergent.

We shall now derive some properties of the Lebesgue integral of simple
functions.

8 [ @)+ [ o) au = [ 7@ + o)) a I

where the existence of the integrals on the left side implies the existence of
the integral on the right side.
To prove A) we assume that f(z) assumes the values fi on the sets
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F; C A, and that g(x) assumes the values g; on the sets G; C 4; hence

[ 7@) dw = S sucr),

I
Il

(3) Ji

(4) Ja

Il

[ 9@ au = 2 06y,

Then, by the lemma,
(6) J= \W {f(x) +g(@)} du = 22 225 (fs + gi)u(Fin Gy).

But
p(F;) = 2 u(Fin Gy),
w(G@5) = 2 p(Fin Gy),

so that the absolute convergence of the series (3) and (4) implies the ab-
solute convergence of the series (5). Hence

J =T+ s

B) For every constant k,

" \h £(z) du = \L {kf(2)} du,

where the existence of the integral on the left implies the existence of the
integral on the right. (The proof is immediate.)
C) A simple function f(z) bounded on a set 4 is integrable over 4, and

[ 5@ i < Mu(4),

where | f(z) | < M on A. (The proof is immediate. )

EXERCISES
1. If 4, B are measurable subsets of X, then

,\h.n | xa(z) — xa(z) |du = u(A AB).

2. If the simple function f(z) is integrable over A and B C A, then
f(z) is integrable over B.

3. Let Fo = [0, 1]. Define the simple function f(z) on F, as follows: On
the 2" open intervals deleted in the nth stage of the construction of the

Cantor set F let f(x) = n. On F let f(z) = 0. Compute ; f(z) du, where
0

u is linear Lebesgue measure.
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§43. The general definition and fundamental
properties of the Lebesgue integral

DzriniTioN. We shall say that a function f(z) is integrable over a set A
if there exists a sequence of simple functions f=(z) integrable over A and
uniformly convergent to f(z). The limit

(1) J = lim,.. \ ful) du

is denoted by

[ 1) au

and is called the integral of f(z) over A.

This definition is correct if the following conditions are satisfied:

1. The limit (1) for an arbitrary uniformly convergent sequence of
simple functions integrable over A exists.

2. This limit, for fixed f(z), is independent of the choice of the sequence
{fa(2)}.

3. For simple functions this definition of integrability and of the integral
is equivalent to that of §42.

All these conditions are indeed satisfied.

To prove the first it is enough to note that because of Properties A),
B) and C) of integrals of simple functions,

\M.N.amsv du — \M\SA.&V &t‘ < u(4) sup :\:A&v — fum() _w& € 4}

To prove the second condition it is necessary to consider two sequences
{fa(2)} and {f.*(z)} and to use the fact that

[ @) au - [ 5242 du

< w(A)lsup [|fa(z) — f(2) |;2 € Al + sup [| fu*(z) — f(2) |; = € 4J).

Finally, to prove the third condition it is sufficient to consider the se-
quence fo(z) = f(x).

We shall derive the fundamental properties of the Lebesgue integral.

THEOREM 1.

,\MH.&t = u(4).

Proot. This is an immediate consequence of the definition.
THEOREM 2. For every constant k,
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k[ i) au = [ (9@} dn,

where the existence of the integral on the left implies the existence of the integral
on the right.
Proof. To prove this take the limit in Property B) for simple functions.
THEOREM 3.

[5@ au+ [ o) an = [ (52 + o(a)} s

where the existence of the integrals on the left implies the existence of the in-
tegral on the right.

The proof is obtained by passing to the limit in Property A) of integrals
of simple functions.

,/THEOREM 4. A function f(x) bounded on a set A is integrable over A.

The proof is carried out by passing to the limit in Property C).

TarorEM 5. If f(2) > 0, then

[s@ aux0,

on the assumption that the integral exists.

Proof. For simple functions the theorem follows immediately from the
definition of the integral. In the general case, the proof is based on the
possibility of approximating a nonnegative function by simple functions
(in the way indicated in the proof of Theorem 4, §40).

CoroLrLARY 1. If f(z) > g(x), then

\.\QV du > h&ev du.

CorOLLARY 2. If m < f(z) < M on A, then

+ mu(4) < [ f@) du < Mu(4).

THEOREM 6. If

4 =U,4, (Ain Aj = @ fors = j),

then

[1@a=-%. 1z du,

where the existence of the integral on the left implies the existence of the inte-
grals and the absolute convergence of the series on the right.
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Proof. We first verify the theorem for a simple function f(x) which
assumes the values

Qu.v osov@@v coe

Let
B, = {z:z € 4, f(z) =y,
msw = mnsn“ﬂ m »Ps u.\.mﬁv = “Snw.
Then
\m\?ﬂv du = Ma yen(Bi) = Mw Yk Ma u(Bar)
(1)

= Ms Ma ”SntA.wswv = M: 4 .\.A&v &t.

Since the series 3, y.u(B;) is absolutely convergent if f(z) is integrable,
and the measures are nonnegative, all the other series in (1) also converge
absolutely.

If f(x) is an arbitrary function, its integrability over A implies that for
every e > 0 there exists a simple function g(z) integrable over A such that

(2) [f(2) — g(2) | < e
For g(z),
3) [o@ a =3, [ o) an

n

where g(x) is integrable over each of the sets 4, , and the series in (3) is
absolutely convergent. The latter and the estimate (2) imply that f(z) is
also integrable over each 4, , and

| [ fa) du - [

o(@) i < T anldn) < eu(d),

< eu(4).

[ 1) au = [ g(2) au

This together with (3) yields the absolute convergence of the series

. \ S(@) du

and the estimate

= [ t@ du ~ [ 1) %_ < 2ei(4).
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Since e > 0 is arbitrary,

Zo [ @) au = [ 1) du.

CoroLLARY. If f(z) is integrable over A, then f(x) is integrable over an
arbitrary A’ C A.

TrEOREM 7. If a function ¢(x) is integrable over A, and | f(z) | < o(zx),
then f(x) 1s also integrable over A.

Proof. If f(z) and ¢(x) are simple functions, then 4 can be written as
the union of a countable number of sets on each of which f(x) and ¢(z)
are constant:

f(z) = aa, o(z) = an A_Qa_mg.v

The integrability of ¢(z) implies that

Sl Gl w(4n) € T cn(An) = \ o(z) da.

Therefore f(x) is also integrable, and

[ 50) du] =1 Za can4)] < Tl 00 u4n)

It

Il

\»_}3 | du M‘\wi&v dp.

Passage to the limit proves the theorem in the general case.

Trans. Note. The proof is as follows: For € > 0, choose an ny > 1/e.
Let {pa:n > ng} be a sequence of integrable simple functions converging
uniformly to the function ¢(x) + €, and let {f,:n > no} be a sequence of
simple functions converging uniformly to f(x). These sequences are chosen
so that they satisfy the inequalities

() 20, |ea(x) = [e(x) + €| <1/n, |falz) — f(x)]| < 1/n.
Then | f(2) | < ¢a() and

[5v@) du| < [ 150) 10 < [ a(o) d

Since
\M.}Asv du — \.u o(z) du + eu(4),

each f,(x) is integrable and f(x) is integrable, and

\.h.wAav du| < \.»s?uv du + eu(A).

Since € > 0 is arbitrary, the desired inequality follows.
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TuEOREM 8. The integrals

Jo= [ @ de, = [ 15

etther both exist or both do not exist.
Proof. The existence of J, implies the existence of J; by Theorem 7.
For a simple function the converse follows from the definition of the
integral. The general case is proved by passing to the limit and noting that

lHal = 1b]| <la—10].

TrEOREM 9 (THE CHEBYSHEV INEQUALITY). If 0(2) > 0 on A, then \
}
wlaiz € 4, o(@) 2 o} < (1/0) [ (@) du. l
Proof. Setting
A ={z:iz € 4, 0(2) 2 d,

we have

\»s?v du = \{ o(x) du + o(z) du > \Ht o(z) du > cu(4’).

AN\ 4’
COROLLARY. If

[ 5@ du =0, g

then f(z) = 0 a.e.
For, by the Chebyshev inequality,

wlaiz € 4,15) | 2 1/n} < [ 17(2) | du = 0
for all n. Therefore,
plzix € A, f(x) # 0} < Yaoiufziz € A, |f(x)| > 1/n) = 0.

EXERCISES

1. Suppose f(z) is integrable over E, and that F is a measurable subset
of E. Then xxf is integrable over E and

\Mxl&v}&v dp = \M\.A&v du.

2 (FirsT MEAN VALUE THEOREM). Let f(z) be measurable,

m < f(z) < M
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on A, and suppose that g(z) > 0 is integrable over A. Then there exists
a real number g such that m < ¢ < M and \. f(x)g(x)du = a \ g(z) du.

3. Suppose that f(x) is integrable over gm set £ = [a, b] m.:% that u is
f(z) du is defined for

[a,2]

linear Lebesgue measure. Then F(z) =
a <z<hb

a) Show that
[F(z:) — F(2))/(2 — 21) = [1/(25 — 21)] e f(z) du

fora <z < z3 < b,
b) For any point 2y, @ < z, < b, at which f(z) is continuous show
that F'(x0) = f(x).
4. Let f, g be integrable over E.

a) If \ f(z) du \ g(x) du for every measurable A C FE, then

4 A
f(z) = g(z) a.e. on E.
b) It [ f(2) du

0a.e.on E.
5. Suppose E = [a, b], u is Lebesgue measure and f is integrable over E.

Show that f(z) du = 0 for @ < ¢ < b implies that f(z) = 0 a.e. on

[a.c]

E. Hint: Consider the class © of A C E for which \ f(z) du = 0 and apply
A

It

0, for.every measurable A C E, then f(z) =

the preceding exercise.

§44. Passage to the limit under the Lebesgue integral

The question of taking the limit under the integral sign, or, equivalently,
the possibility of termwise integration of a convergent series often arises
in various problems.

It is proved in classical analysis that a sufficient condition for interchang-
ing limits in this fashion is the uniform convergence of the sequence (or
series) involved.

In this section we shall .prove a far-reaching generalization of the cor-
responding theorem of classical analysis.

TarEOREM 1. If a sequence f.(z) converges to f(x) on A and

[a(@) | < o(2)

for all n, where ¢(x) is integrable over A, then the limit function f(z) is in-
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tegrable over A and
[ #u@) du— [ 5(z) d.
A 4

Proof. It easily follows from the conditions of the theorem that

|f(z) | < o(2).

Let Ar={z:k— 1 < ¢(x) < k},and let B, = Upsmy1 4r = {z:0(z) > m}.
By Theorem 6 of §43,

(%) \;iev dp = 2 .\: o(x) du,

and the series (*) converges absolutely.
Hence

\ sAgv%uMﬁst \ sﬁav&?
Bm Ap
The convergence of the series (%) implies that there exists an m such that

\w o(x) du < ¢/5.

m

The inequality ¢(z) < m holds on 4 \ B.. . By Egorov’s theorem, 4 \\_B,,
can be written as A \ B, = C u D, where u(D) < ¢/5m and the sequence
{fs} converges uniformly to f on C.

Choose an N such that

[ fa(z) — f(2) | < €¢/5u(C)
foralln > N and xz € C. Then

[1n@) = s@du = [ guw)du — [ (o) da
+ [ 1@ du = [ 1) du + [ 11(a) — sl <5e/5 =
CoroLLARY. If | fu(z) | £ M and fu(z) — f(x), then

[ 5u@) au— [ 1z d.

ReEMARK. Inasmuch as the values assumed by a function on a set of
measure zero do not affect the value of the integral, it is sufficient to assume
in Theorem 1 that {f.(z)} converges to f(x) a.e.
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THEOREM 2. Suppose that
H(@) S folz) < -+ < falz) £ -

on a set A, where the functions f.(x) are integrable and their tntegrals are
bounded from above:

[ 5@ du < k.

Then
(1) f(2) = limg.x fa()
exists a.e. on A, f(z) is integrable on A and

[ 5@ au [ 1) an

Clearly, the theorem also holds for a monotone descending sequence of
integrable functions whose integrals are bounded from below.

On the set on which the limit (1) does not exist, f(z) can be defined
arbitrarily; for instance, we may set f(z) = 0 on this set.

Proof. We assume that f(z) > 0, since the general case is easily reduced
to this case by writing

Fa(@) = fulz) — fu(2).
We consider the set
Q= {21z € A, fu(z) > w}.
It is easy to see that @ = N, U, 2,", where
0" = {z:x € A, fu(z) > 7.
By the Chebyshev inequality (Theorem 9, §43),
w(2") < K/r.
Since %" € %" € - €. < -+, it follows that
#(Un2.7) < K/r.
Further, since
2 c U, 2,
for every r, u(2) < K/r. Since r is arbitrary,
©(Q) = 0.

This also proves that the monotone sequence fa(z) has a finite limit f(x)
a.e. on A.
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Now let ¢(x) = r for all x such that
r—1<f(z) <r (r=1,2 ---).

If we prove that ¢(z) is integrable on A, the theorem will follow imme-
diately from Theorem 1.
We denote by A4, the set of all points z € A for which ¢(z) = r and set

wn = “I.H k&.ﬂ .

Since the functionsf.(z) and f(x) are bounded on B, and ¢(z) < f(z) + 1,
it follows that

[ o@ au < [ ) du+ uia)

= limn.s | fa(2) dp + w(4) < K + u(4).

But

\W o(z) du = Dty ru(4,).

Since the partial sums in the above equation are bounded, the series

Traru(d,) = [ o) du

converges. Hence ¢(z) is integrable on A.
COROLLARY. If ¥.(x) > 0 and

2 [ @) d <
then the series =y ¥n(z) converges a.e. on A and

[ @) du = T2 [ 9u(e) de

TaeorEM 3 (FATou). If a sequence of measurable nonnegative functions
{fa(z)} converges a.e. on A to f(x) and

[ 5:@) au < K,
then f(x) is integrable on A and

[ au < &.
Proof. Set
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en(z) = inf {fu(z); &k > n}.
¢a(x) is measurable, since
{Tien(e) < c = Uksn {z:fe(z) < c}.
Furthermore, 0 < ¢,(2) < fa(z), so that ¢,(2) is integrable, and

[o@ o< [ £y du < K.
Finally,
e1(z) S ep(z) < -+ <) < ---
and
lima.w ea(2) = f(x) (ae.).

The required result follows by application of the preceding theorem to

{en(2)}.
THEOREM 4. If A = U, A,,A;n A4; = § (¢ # j) and the series

(2) 2 I OIE

converges, then f(x) is integrable on A and

[ @) au = 5. [ @) .

What is new here as compared with Theorem 6, §43 is the assertion
that the convergence of the series (2) implies the integrability of f(z) on
4.

We first prove that the theorem is true for a simple function f(z), which
assumes the values f; on the sets B;. Setting

msm"xﬁﬁawmv

we have
\: | /@) | du = 3501 fi| n(Aans).

The convergence of the series (2) implies that the series

2o 2oilfil w(An) = i1 fi| u(Bin 4)

converge.
In view of the convergence of the last series, the integral

[ 52) du = S gu(Be n )

exists.
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In the general case, we approximate f(z) by a simple function f(z) so
that
(3) |f(z) = f(z) | <e
Then

.\W_wAav_&tM\w [ f(z) | du + eu(A4,).

Since the series
Do u(4a) = u(4)

converges, the convergence of (2) implies the convergence of

= [ 17@) | da,

that is, in view of what has just been proved, the integrability of the simple
function f(z) on A. But then, by (3), () is also integrable on A.

EXERCISES

1. Let X = [0, 1], let u be linear Lebesgue measure and suppose that
f(z) > 0 is measurable.

a) Suppose ¢ > e > -+ > € > -+, &, — 0 and f(z) integrable over
[€x , 1]. Then f is integrable over [0, 1] if, and only if, lim,_. Jte,n1 f(x) dp
exists, and in that case

1(@) dp = limpe [ f(a) du.

[0,1] [en,1]

(This justifies the remark made at the end of §45.)
2. For f(x) measurable on the measurable set E define

8= 2w k2 Mz k2" < f(x) < (k+1)2" 2 € E),n =12 -
a) If f is integrable on E, then each S, is absolutely convergent,

lim, S, exists and

\ (@) du = limy,., S,.
B

b) Conversely, if S, converges absolutely for some 7, then S, con-
verges absolutely for all n, f(x) is integrable over E and the above equality
holds.

¢) Let n = 0 in a). It follows that
So = 2k |k|ulzik < f(z) <k + 1} < o.
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Show consequently that f integrable over E implies that
>m,z € E} =

Hint: Reduce the problem to the case f(z) > 0.

3. Let X be measurable, and let (a, b) be an interval of real numbers.
Suppose f(z, t) is real-valued for z € X, ¢ € (@, b) and that it satisfies the
following:

(i) Fort € (a, b), f(x, t) is integrable over X.

(i) of(x, t)/ot exists for all ¢ € (a, b) and there exists a function S(z)

integrable over X for which

| f(z, ¢)/0t| < S(=)

lim oo mp{z

[z € X,t € (a,b)].
Show that

afdt | f(z,0) du = [ esta, 00/t du.

Hint: For & € (a, b) the limit defining the derivative can be obtained by
using a sequence {¢,} in (a, b), ¢, — & . Apply Theorem 1.

§45. Comparison of the Lebesgue and Riemann integrals

We shall discuss the relation of the Lebesgue integral to the usual Rie-
mann integral. In doing so, we restrict ourselves to the simplest case, linear
Lebesgue measure on the real line.

TuEOREM. If the Riemann integral

b
= (R) \n f(z) dz

exists, then f(x) is Lebesgue integrable on [a, b], and

\?s f(z) du =

Proof. Consider the partition of [a, b] into 2" subintervals by the points
e =a+ (k/2")(b — a)
and the Darboux sums
Su=(b—a)2™ 330 My,
S, = (b—a)2™" MUTL Mak
where M is the least upper bound of f(z) on the interval

T S 2

mgku
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and M. is the greatest lower bound of f(z) on the same interval. By defi-
nition, the Riemann integral is
J = liMpse Sn = liMpae Sy .
We set
Jn(2) = Mo

fa(@) = M

(xra <z < 1),

(e < 2 < ).

The functions f, and f, can be extended to the point = b arbitrarily. It
is easily verified that

,W:ASV dp = 8

[a,b]

.\, M.:A&v &t =
[a,]

Since {f.} is a nonincreasing sequence and {f.} isa nondecreasing sequence,
Fa(2) - J(z) 2 f(2),
fa(z) — f(z) < f(2)

a.e. By Theorem 2 of mpﬁ

(@) dp = limpee S, = J = lim,,,, S, = f(z) dp.

[a,b] [a,b]
Therefore,

\Fs |7(z) — f(2) | du = \?s (@) — f(z)} du =
consequently,
f(z) — f(z) =
a.e, ie.,

#(z) = f() = (),
\H L, F@) du = \_  F@) du =

This proves the theorem.

Trans. Note. The following well known characterization of Riemann
integrable functions now follows immediately from the preceding theorem
and the observation that f(z) is continuous at z if, and only if, f(z) = f():
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- Let f(x) be bounded on [a, b]. Then f(x) is Riemann integrable if, and only
if, it is continuous a.e.

It is easy to construct an example of a bounded function which is Lebesgue
integrable but not Riemann integrable (for instance, the Dirichlet function
mentioned above).

An arbitrary function f(z) for which the Riemann integral

[ 151 as

approaches a finite limit J as e — 0 is Lebesgue integrable on [0, 1], and
1
f(z) du = mBi\ f(z) dx.
[0,1] €

(See Ex. 4, §44.) ,
In this connection it is interesting to note that the improper integrals

\o_\@ dz = limeo \,H\g dz,

where

-1
lime [ 17(2) | da = o,

cannot be taken in the sense of Lebesgue: Lebesgue integration is absolute
integration in the sense of Theorem 8, §43.

EXERCISES

1. Let f(x), g(x) be Riemann integrable functions on [a, b]. Then
f(z)g(x) is Riemann integrable on [a, b]. This fact can be proved without
the characterization of Riemann integrable functions given in the text, but
a direct proof is difficult.

2. A nondecreasing (nonincreasing) real-valued function defined on an
interval [a, b] is Riemann integrable on this interval.

3. Show that the function

f(z) = d/dz(a’ sin 1/2°) = 2z sin 1/2® — (2/x) cos 1/2*
is not Lebesgue integrable over [0, 1], although f(z) is continuous on [e, 1]
1
for every ¢ > 0 and lim,,, \ f(x) dz exists; that is, f(z) is improperly

Riemann integrable, the integral being only conditionally convergent.
Hint: | f(z) | > (2/z) | cos 1/2® | — 22 > 2™ — 2z on each of the inter-

vals {(2n + P} <2 < {(2n — })x}™
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§46. Products of sets and measures

Theorems on the reduction of double (or multiple) integrals to repeated
integrals play an important part in analysis. The fundamental result in the
theory of multiple Lebesgue integrals is Fubini’s theorem, which we shall
prove in §48. We first introduce some auxiliary concepts and results which,
however, have an interest independent of Fubini’s theorem.

The set Z of ordered pairs (z, y), where z € X, y € 7, is called the
product of the sets X and Y and is denoted by X X Y. In the same way,
the set Z of finite ordered sequences (21, - - - , z,), where 2, € X, is called
the product of the sets Xy, -- -, X, and is denoted by

Z=XiXXa X XX,= Xpy X
In particular, if
Xi=Xy=+-. =X, =X,
the set Z is the nth power of the set X:
Z = X"

For instance, the n-dimensional coordinate space D" is the nth power of
the real line D'. The unit cube J", that is, the set of points of D" with co-
ordinates satisfying the conditions

OM&NAH

(1<k<n),

is the nth power of the closed unit interval J* = [0, 1].
If @1, -+, Gn are collections of subsets of the sets X;, - -+, X,,, then

R=& X+ X&,
is the collection of subsets of the set X = X, X, representable in the form
A=A4, X XA, (4r € &)
If& =& = -+ = &, = &, then R is the nth power of &:
R ="
For instance, the set of all parallelopipeds in D" is the nth power of the set
of closed intervals in D".
THEOREM 1. If &, - - -, &, are semi-rings, then R = X, Sy is a semi-ring.
Proof. In view of the definition of a semi-ring (§34), we must prove that
if 4, B € R, then 4 n B € R; and if, moreover, B C 4, then A = U2, C;,

where C1 = B,C;inCj =0 (i#j)andC; € R (1 <¢ < m).
We shall carry out the proof for n = 2.
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I) Suppose that 4, B € &, X &;. Then
A =4, X A4,, 4, € &, 4; € & ;
B = B, X B, B, € &, B; € &,.
Hence
AnB = (A4:nB) X (4:n By),
and since
A4:n B € &, 410 By € &,
it follows that
AnB€ G X G,.
II) Now, on the same assumptions as in I), suppose that B € A. Then
B, cC 4,, B, C A,,
and because €, and &; are semi-rings, it follows that
4, = Biu B® Uu---u prcav
4y = w»,c N»E Uue--u w»:v.
A=A41XAs=(BiXB)u(BiXB®) v+ u (B X B®)
u (B X By) u (B® X B®)u---u (B x BWY)
U (B X B)) u (B® X By®) u -+ u (B,* X B,).

In the last relation the first term is B; X B; = B and all the other terms
are elements of &; X &, (all pairwise disjoint). This proves the theorem.

However, if the &, are rings or Borel rings, it does not follow that X; &,
is a ring or a Borel ring.

Suppose that the measures

m(A41), pa(As), <+, pn(A4a) (Ax € &)

are defined on the semi-rings &, , --- , &, .
We define the measure

N

= Xp2X " X s
on
R=GX& X X6,
by the following condition: If 4 = 4, X -+ X 4, , then
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t?»v = EA\»CETA”V v ts?»:v.

We must prove that u(4) is a measure, that is, that u(A4) is additive. We
do so for n = 2. Let

4=4,X4=UB" BYnB” =g (& #j),
B® = B® % B,®.
It was shown in §34 that there are partitions
4, =U, 0", 4,=U,c™
such that B, = U,..,.4) 0 and B,*® = Usevawr Co™. Tt is obvious that
(1) w(4) = m(A)p(4s) = Zn Tu (1™ )ua(C™),
@) w(BY) = m(B®)a(B®) = Teser Cewetr s (Cr™ Yuia( o),

where the right side of (1) contains just once all the terms appearing on the
right side of (2). Therefore,

w(4) = 25 u(B®),

I

which was to be proved.

In particular, the additivity of the elementary measures in Euclidean
n-space follows from the additivity of the linear measure on the real line.

THEOREM 2. If the measures p; , us )y " * M are g-additive, then the meas-
ure uy X -+ X un 18 o-additive.

Proof. We carry out the proof for n = 2. Denote by A; the Lebesgue ex-
tension of u; . Let ¢ = U2_; C,, where C and Cn are in &; X &, that is,

C=A4XB (4 € &, B c &),
Q: = \Ms Xw: Ak.a m @ug wa m @»v
Forz € A we set

It is easy to see that if z € 4,
2onfa(z) = w(B).
Consequently, in veiw of the Corollary to Theorem 2, §44,
S [ 122 @i = [ wa(B) dn(4) = u(0).
vA A

But
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\L Fa(@) d = ma(Bm(An) = u(Cy),

so that
2o u(Ca) = u(C).

The Lebesgue extension of the measure y; X «-- X u, will be called the
product of the measures u; and will be denoted by

MmM® - Qpn = Qrur.
If
M= = =,
we obtain the nth power of the measure u:

" = Qu (pe = w).

For instance, the n-dimensional Lebesgue measure u" is the nth power of the
linear Lebesgue measure u'.

EXERCISES

1. If &, and & are rings, then the collection of all finite disjoint unions
of rectangles, i.e., elements of &; X &, is a ring.

2. If &, and &, are rings each containing at least two distinct nonempty
sets, then ©; X &;is not a ring.

3. Let X = Y = [0, 1], let P& = P be the collection of Lebesgue meas-
urable sets, and let u; = ps be linear Lebesgue measure. The product meas-
ure p = p X pe on Py X Me is not complete (see the end of §39). Hint:
Fory € Y, u(X X y) = 0. X contains a nonmeasurable subset M.

§47. The representation of plane measure in terms of the linear measure
of sections, and the geometric definition of the Lebesgue integral
Let @ be a region in the (z, y)-plane bounded by the verticals z = aq,

z = b and by the curves y = ¢(z), y = ¢(z).

The area of the region G is
b

V(6) = [ fo@) — y(@)} da,

a

where the difference ¢(20) — (o) is equal to the length of the section of
the region G by the vertical z = z,. Our problem is to carry over this
method of measuring areas to an arbitrary product-measure

b= @ oy

We shall assume that the measures u, and u, , defined on Borel algebras
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with units X and Y, respectively, are s-additive and complete (if B C 4
and u(4) = 0, then B is measurable). It was shown previously that all
Lebesgue extensions have these properties.

We introduce the following notation:

4z = {y: (z,9) € 4},
4, = {z: (z,y) € 4}.

If X and Y are both real lines (so that X X Y is the plane), then 4.,
is the projection on the Y-axis of the section of the set A with the vertical
r = 2.

TaeorEM 1. Under the above assumptions,

W) = [ w(A) du. = [ w4, du,

for an arbitrary u-measurable set A.
(We note that integration over X actually reduces to integration over the
set U, 4, € X, in whose complement the function under the integral sign

is zero. Similarly, \ = \ ,where B = U, 4, .)
Y B
Proof. It is clearly sufficient to prove that

(1) W) = [ pu@) du.,

where p4(z) = p,(4.), since the second part of the theorem is completely
analogous to the first. We note that the theorem includes the assertion that
the set A, is p,-measurable for almost all z (in the sense of the measure
uz), and that the function ¢, (z) is u~-measurable. If this were not so, (1)
would have no meaning.

The measure u, the Lebesgue extension of

m = py X py,
is defined on the collection S,, of sets of the form
4 =4, X A4,

where \ws. is uz-measurable and .Aao is uy-measurable.
Relation (1) is obvious for such sets, since

t.\A\maev (x € uﬁ:au
ealz) = A 0 (z ¢ m;w.

Relation (1) can be extended without difficulty also to the sets of R(Sw),
that is, to finite unions of disjoint sets of S, .
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The proof of (1) in the general case is based on the following lemma,
which has independent interest for the theory of Lebesgue extensions.
LeMmA. If A is a p-measurable set, there exists a set B such that

B =N,B,, BiDB;, D+ 2B, D",
B, = U, B, BuCBuwC- - CBuC -,
where the sets By are elements of R(Sn), A C B and
(2) n(4) = u(B).
Proof. The proof is based on the fact that, according to the definition of
measurability, for arbitrary = the set 4 can be included in a union
Cn = U, A,

of sets A,y of Sn such that u(Cr) < u(4) + 1/a.
Setting B, = N;_; C;, it is easily seen that the sets B, will have the form
B, = U, ,, , where the sets 3,, are elements of S . Finally, putting

B = Cwﬁu Ons

we obtain the sets required by the lemma.
Relation (1) is easily extended with the aid of the sets B, € R(Sx) to
the sets B, and B by means of Theorem 2, §44, since

02, () = liMpwes,,(2), @5, <¢s, < - -,
es(x) limn.ew ¢5,(2), @5, > @5, = -+ .
If u(A) = 0, then u(B) = 0, and
o5(2) = py(B:) =0
a.e. Since 4, C B, , A, is measurable for almost all z and

pa(x) = py(4s) = 0,

I

.\VSLA&V du, = 0 = u(4).

Consequently, relation (1) holds for sets A such that p(d) = 0.If 4 is
arbitrary, we write it as 4 = B\ C, where, in view of (2),

r(C) = 0.

Since (1) holds for B and C, it is easy to see that it also holds for A.

This completes the proof of Theorem 1.

We now consider the special case when Y is the real line, iy 18 linear
Lebesgue measure and A is the set of points (z, y) such that

|
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T €M,
@ Ao <y < f(2),

where M is a u,-measurable set and f(z) is an integrable nonnegative func-
tion. Then

_ @ (ze M),
te?hnv = A 0 A& € Ev.

u(4) = \.E\Aav dps.

We have proved the following

TueorEM 2. The Lebesgue integral of a monnegative integrable function
f(z) ts equal to the measure p = p, ® p, of the set A defined by (3).

If X is also the real line, the set M a closed interval and the function
f(z) Riemann integrable, this theorem reduces to the usual expression for
the integral as the area under the graph of the function.

EXERCISES

1. The assumption that u.(X) < « and u,(¥) < o, or more generally
that X and Y are countable unions of sets of finite measure cannot be
dropped from Theorem 1. Let X = ¥ = [0, 1], let &, be the class of Lebes-
gue measurable sets of X, u, Lebesgue measure, &, the class of all subsets
of Y, u,(A) the number of pointsin 4, 4 C V. If E = {(z,y):z =y},

show that \ wy(Es) dus = 1, but \ ue(By) duy = 0,
X Y

2. Under the hypotheses of Theorem 2, the graph of a nonnegative
measurable function, i.e., {(z, f(z)):2x € M}, has u-measure zero.
3. Let X = Y = [0, 1], let u, = p, be linear Lebesgue measure and set
# = pz ® py . Suppose that A C X is nonmeasurable and that B C ¥ is
such that u,(B) = 0.
a) xaxs(Z, y) is u-measurable.
b) xaxz(z, y) is u,-measurable for almost all (but not all) y € Y.
4. If A and B are measurable subsets of X X ¥, ie, (b = ps ® uy)-
measurable, and p,(4.) = p,(B.) for almost every z € X, then

r(4) = u(B).

5. Suppose v = f(u) is a strictly increasing continuous function defined
on [0, «) with f(0) = 0 and lim,.., f(x) = «. Then u = ) = g)
also has all these properties. Suppose that 0 < u, < 0,0 <y < o,
7 = [0, g, V = [0, vo], and u,, = g, is linear Lebesgue measure. Let

F(u) = .\

[0,ual

1) dua, G00) = [

[0,90]

g(v) dp,.
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Prove Young’s inequality:
uwo < F(uo) + G(),
where the equality holds if, and only if, v, = f(u), or equivalently
u = g(v).

The result can be demonstrated as follows:
a) Let
By = {(u,0):0 < v < f(u), 0<Lu< uf,
Ey = {(u,):0 < u < g(v), 0<v< 0w,
I =UXV, p=p.Qu,.

Show that I = (I n Ey) u (I n E,), with p[(I n E1) n (I n Es)] = 0 (use
§47, Ex. 2). It follows that

ol = uwo = p(I n Ey) + u(I n Ey).

\e\g Gihe = \QA\MS?: &Ev it
= \q A\z min (sg./(u))] &:v Ao

=pu(In E)

(use §47, Theorem 2).
Similarly, one shows that G(uo) > u(I n Es).
The result is now clear.

b) Show that

F(uo)

§48. Fubini’s theorem

Consider a triple product
(1) U=XXYXZ.
We shall identify the point
(z,9,2) €U

with the points

((z, 9), 2),

(2, (y,2))
of the products
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(2) (XX7Y)XZ,
(3) X X (Y X 7).

We therefore agree to regard the products (1), (2) and (3) as identical.
If measures u. , py , p, are defined on X, ¥, Z, then the measure.

By = pz @ py @ p,
may be defined as

My = Ata®t€v ®tu»

or as

b = s @ (py @ p,).

We omit a rigorous proof of the equivalence of these definitions, although
it is not difficult.
We shall apply these general ideas to prove the fundamental theorem of
the theory of multiple integrals.
' FuBINI’S THEOREM. Suppose that o-additive and complete measures p, and
by are defined on Borel algebras with units X and Y, respectively; further, sup-
pose that

k= ps @ py,
and that the function f(x, y) is u~integrable on

4 = A4, X A,
Then (see the parenthetical remark on p. 69)
.\‘ &.ASv @v &t = .\, A .\.ASu m\v &.:&v &.té
A P ¢ Az
(4)
= .\. A \.A&. Qv &tav &te.
¥ \J4,

Proof. The theorem includes among its assertions the existence of the
integrals in parentheses for almost all values of the variables with respect
to which the integrals are taken.

We shall prove the theorem first for the case f(z, y) > 0. To this end
consider the triple product

U=XXY XD,
where the third term is the real line, and the product measure
A= ®@p @ u =uQ 4,

where y' is linear Lebesgue measure.



74 THE LEBESGUE INTEGRAL [cH. vir

We define a subset W of U as follows:
(%,9,2) €W
if
v €4y, yE€A,,
0 <z < f(z,y).

In view of Theorem 2, §47,
() W) = [ f(z,9) du.

On the other hand, by Theorem 1, §47,

(©) AW = [ &%) du,

where £ = y, @ u' and W, is the set of pairs (y, 2) for which (=, y, z) € W.
By Theorem 2, §47,

Aﬂv MA.NVuV = ) .\.A&» m\v &te.

Comparing (5), (6), and (7), we obtain

\\Q. z) dp = \NA MRICEY &Ev dpis.

This completes the proof of the theorem if f(z, y) > 0. The general case
" is reduced to the case f(z, y) > 0 by means of the relations

.\.A&. N\v = %+A&. w\v - .\.IA»““ e.\v»
Fy) = i@ ) |+ @), F(y) =& y) | — i, y)l

ReMARK. It can be shown that if f(=, y) is u-measurable, then

[, v) au

exists if

N

\w QW. | #(z, ) | &Ev dps
exists.

ExampLEs where (4) does not hold.
1. Let

.
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4 = Hl.u_.u Hu_wu
(z,9) = zy/(&® + y*)"
Then
1
.ﬁxa, y) dz =0 (y = 0),
and
1
.m_}e. y)dy =0 (z # 0).
Therefore

.h A«h.}ﬁ y) &av dy = .h Arh\@v y) &@v dz = 0;

but the Lebesgue double integral over the square does not exist, since

1 1 1 27 1

‘M .NH | f(z, y) | dz dy > \ %..\. (sin ¢ cos /r) dp = 2 \ dr/r = .
1 1 0 0 0
2. 4 =0, 17,

2o P <e<@7 @ <y<@T,
f(@,y) = (=2 (P <z2<@" @"<y<@,
0 (for all other points in the square).

A simple calculation shows that

\...AA\.._}&,S%WV&QHP \_,HA\AHH?,@V%V&&H?

EXERCISES

1. Suppose f(x) and g(y) are integrable over X and Y, respectively, and

Mz, y) = f(2)g(y). Show that h(z, y) is (4 = ws ® uy)-integrable over
X X Y and

Jo 1290 = [ 160) e [ 900) .

2. Suppose that X = Y = [a, b] and that p, = uy is linear Lebesgue
measure. Let f(z), g(z) be integrable over X and periodic with period
b — a. The convolution f * g of f and g is also defined as a periodic function
on [a, b] by

(f*g)(2) = (@ = y)g(y) du,.

[a,b]
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Show that (f * ¢)(x) is integrable over X and

[ @i < [ 15 due [ 19w da.

The integrability of f * g demonstrates the existence of (f * g) (z) for almost
all z € X. Hint: Use Fubini’s theorem.

3. Suppose that f(z) is integrable over [0, b] with respect to Lebesgue
measure. Suppose that o > 0. The ath fractional integral of f is defined by

L(N@) = 0@ [ (2 = )"(2) du

[0,z}

for x € [0, ], where T'(«) is the Gamma function. Show that I,(f)(z) is
defined a.e. on [0, b] and is integrable over [0, a] for a € [0, b]. Hint: Do
directly as in Ex. 2, or use a suitable convolution of f(z) with another
function.

4. Suppose that & > 0, 8 > 0, f(z) is integrable on [0, b] with respect
to Lebesgue measure. By Ex. 3, I4[I,(f)(x)] is defined a.e. on [0, b]. Show
that

TlLa(£) (@)] = Lass(f) ().
Hint: Use the result: for p > 0, ¢ > 0,

\H Ly @ = ) e = TN/ + ).

5. (INTEGRATION BY PARTs.) Let X = ¥V = [0, bjand let pu = pz ® py,
where u; = u, is linear Lebesgue measure.
Suppose that f(x), g(z) are integrable over X. If

G = [ g(a) du

[0,2]

mﬂA&v = .\.An«v &.:é ’

[0,7]

for z € [0, 1], then

[ P@)g(z) du. = P0YG() ~ [ #@)6(@) du.

The result may be demonstrated as follows:

a) Let £ = {(,y):(w,y) € X X Y,y < z}. Show that E is y-meas-
urable. Hence x is p-measurable and H(z, y) = xz(z, y)g(x)f(y) is also
u-measurable.

b) Show that H(z, y) is integrable over X X Y with respect to p.
(Apply Ex. 1.)

¢) Apply Fubini’s theorem to obtain
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md = =
[oF@0@ d = [ a0 a= [ 100 (]
This will yield the stated result.

g9(z) &Ev duy -

¥p]

§49. The integral as a set function

We shall consider the integral F(A4) = ,\. f(z) du as a set function on
A

the assumption that Sy is a Borel algebra with unit X and that \. f(z) du
X

exists.
Then, as we have already proved:
1. F(A) is defined on the Borel algebra S, .
2. F(4) is real-valued.
3. F(4) is additive, that is, if
A = Ca \_,: A\r u&s € @tvu
then
F(A) = 3, F(4,).
4. F(A) is absolutely continuous, that is, u(4) = 0 implies that
F(A) = 0.

We state the following important theorem without proof:

) Rapon’s THEOREM. If a set function F (4) has properties 1, 2, 3 and 4, 1t
18 representable in the form

F(4) = .\M.ﬂmav du.

. We shall show that the function f = dF/dp is uniquely defined a.e. In
act, if

F(4) = [ fi(z) du = [ (=)
forall 4 € S,, then

W) <nf (=) d=o0
Ap
for arbitrary n, where

An = {z:fi(z) — falz) > 1/n}.
Similarly,
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u(B,) =0
for
B. = {z:fa(z) — fi(z) > 1/n}.
Since
{z:fi(z) # fo(z)} = U, 4, u U, B,
it follows that

wa:fi(z) # fo(z) }= 0.
This proves our assertion.

EXERCISES
1. With the notation of this section, suppose that f(z) > 0 and let

v(4) = \W f(z) du. Then the conditions listed before Radon’s theorem

can be paraphrased by saying that »(A4) is a completely additive, absolutely
continuous measure on the Borel algebra S, . Show that if g(x) is integrable
over X with respect to », then.

,\..»QQ\.V dv = .\M.\.A&VQQV du

2. If »(4) is a completely additive measure on the Borel algebra S,,
then » may have the following property: For ¢ > 0 there exists a § > 0
such that 4 € S, and p(4) < § imply »(4) < e It is easy to see that if
v has this property, then » is absolutely continuous with respect to u, i.e.,
r(4) = 0 implies »(4) = 0. Show, conversely, that if » is absolutely con-
‘tinuous with respect to u, then » has the above (e, §) property.

(4 € 8.

Chapter VIII
SQUARE INTEGRABLE FUNCTIONS

One of the most important linear normed spaces in Functional Analysis
is Hilbert space, named after the German mathematician David Hilbert,
who introduced this space in his research on the theory of integral equa-
tions. It is the natural infinite-dimensional analogue of Euclidean n-space.
We became acquainted with one of the important realizations of Hilbert
space in Chapter IIT—the space I, , whose elements are the sequences

x = A&u; EEINE S v
satisfying the condition
“vnuu. 83& A 0,

We can now use the Lebesgue integral to introduce a second, in certain
respects more convenient, realization of Hilbert space—the space of square
integrable functions. In this chapter we consider the definition and funda-
mental properties of the space of square integrable functions and show
that it is isometric (if certain assumptions are made about the Imeasure
used in the integral) to the space I, .

We shall give an axiomatic definition of Hilbert space in Chapter IX.

§60. The space L.

In the sequel we consider functions f(z) defined on a set R, on which a
measure u(E) is prescribed, sati ying the condition u(R) < . The
functions f(z) are assumed to e measurable mu& efined a.edon R. We
shall not distinguish between functions equivalent—on—#. For brevity,

instead of .\. we write simply .\. .
R

DerFmviTion 1. We say that f(z) is a square integrable (or summable)
function on R if the integral

[ (@) au

exists (is finite). The collection of all square integrable functions is denoted
Uv\ NG .

The fundamental properties of such functions follow.

TuaEOREM 1. The product of two square tntegrable functions is an integrable
function.

79
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The proof follows immediately from the inequality
[f(2)g9(z) | < 3[*(2) + ¢'(=)]

and the properties of the Lebesgue integral.
CorOLLARY 1. A square inlegrable function f(x) is integrable.
For, it is sufficient to set g(z) = 1 in Theorem 1.
THEOREM 2. The sum of two functions of Lz is an element of Ls .
Proof. Indeed,

[f(2) + 9(2)) < () + 21§(2)9(z) | + ¢'(=),

and Theorem 1 implies that the three functions on the right are summable.
TaeoreM 3. If f(x) € Ls and a is an arbitrary number, then o f(x) € L.
Proof. If f € L, , then

[let@r s = o [ @) du < .

Theorems 2 and 3 show that a linear combination of functions of L;
is an element of L, ; it is also obvious that the addition of functions and
multiplication of functions by numbers satisfy the eight conditions of the
definition of a linear space (Chapter III, §21). Hence L, is a linear space.

We now define an ¢nner (or a scalar) product in L, by setting

(1) (£,0) = [ #2)g(@) du.

An inner product is a real-valued function of pairs of vectors of a linear
space satisfying the following conditions:

Hv A\.ubv = AQ..\V. ‘
Mv A%~+.\.»~Qv"A.>.QV+A\»uQV. o
wv AV.\.. QV = V'A.‘.. Qv. \ ™ \ 1
4) (f,f) > 0if f = 0. f Vo) A >
The fundamental properties of the integral immediately imply that
Conditions 1)-3) are satisfied by (1 . Inasmuch as we have agreed not to
distinguish (between equivalent functions)(so that, in particular, the null
element in L, is the collection of all functions on R equivalent to f = 0),
Condition 4) is also satisfied (see the Corollary to Theorem 9, §43). We
therefore arrive at the following

DEermiTion 2. The space L is the Euclidean space (a linear space with
an inner product) whose elements are the classes of equivalent square
integrable functions; addition of the elements of L, and multiplication by
scalars are defined in the way usual for functions and the inner product is

—
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defined by
(1) (£,0) = [ #(2)g(a) du.
The Schwarz inequality, which in this case has the form
(@) ([ o0 @) < [ @) au- [ ¢ an,

is satisfied in L., as it is in every Euclidean space (see Ex. 3, §56). The
same is true for the triangle inequality

® A{fvo +ooraf <{[r@af +{f 2w i)

In particular, the Schwarz inequality yields the following useful in-
equality:

@ ([ @) < wi> [ £ a
To introduce a norm into L, we set
3
(5) 170 = 0 = [ [ 70 au] (f € L.

Exercise. Using the properties 1)—4) of the inner product, prove that
the norm defined by (5) satisfies Conditions 1-3 of the definition of a
norm in §21.

The following theorem plays an important part in many problems of
analysis:

THEOREM 4. The space L is complete.

Proof. a) Let {fu(x)} be a fundamental sequence in L, , Le.,

[fo = fnll—0

Then there is a subsequence of indices {n:} such that

_:.En - \:»t __ < @va

Hence, in view of inequality (4), it follows that
[ 150 = (o) 1 < W {[ 1005) = @ af

< BB
This inequality and the Corollary to Theorem 2, §44 imply that the series
[ for(@) | + | fas(®) = far(@) | + - --

(n,m— =),
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converges a.e. on K. Then the series

Ja () + [fag(z) — (@) + -

also converges a.e. on R to a function
(6) f(@) = limpss fri(2).

Hence, we have proved that if {f,(z)} is a fundamental sequence of func-
tions in L, , it contains an a.e. convergent subsequence.

b) We shall now show that the function f(x) defined by (6) is an ele-
ment of L, and that

(7) | fa(z) — f(z) | =0 (n— ).
For sufficiently large k and I,

\o_”.\.fnﬂ&v - .\w«NA&v”_N &t A €.

In view of Theorem 3, §44, we ,Em% take the limit under the integral
sign in this inequality as I — . We obtain

[ V@) = j@F au'< e

It follows that f € L, and f., — f. But the convergence of a subsequence
of a fundamental sequence to a limit implies that the sequence itself con-
verges to the same limit. [Convergence here means the fulfillment of (7);
in this connection see §51.] This proves the theorem.

EXERCISES
1. If we define the distance d(fi, f2) in Ly(R, u) as

1) = 15— Rl = ([ 1) — f@)P da,

then d satisfies the axioms for a metric space (see vol. 1, §8). Further-
more, d is translation invariant, i.e.,

difi + £, f2 + f) = d(fr, f2)

for fi, f2, f € L. Thisresult, of course, holds in any normed linear space
(see vol. 1, §21).

2. Let R = [0, 1] and let u be linear Lebesgue measure. Show that
{7: | £1| < 1} is closed and bounded, but not compact.

3. With the notation of Ex. 2, show that the set of continuous functions
on [0, 1] is a linear manifold in L, , but is not a subspace, i.e., is not closed.
(For the terminology, see §57.)
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4. A measurable function f(z) is said to be essentially bounded (on R)
if there exists an @ > 0 such that | f(z) | < a a.e. on R. The number a is
called an essential upper bound of f on R. For an essentially bounded func-
tion f, let m = inf {a:a an essential upper bound of f}. The number m is
called the essential supremum of f: m = ess. sup .

a) Show that ess. sup f is the smallest essential upper bound of f on R.

b) Let Lo(R, 1) be the collection of essentially bounded functions on
R. If we put || f| = ess. sup f, show that L. becomes a normed linear
space.

5. Let Ly(R, u), p > 1, be the set of measurable functions f defined on
R for which | f(z) |” is integrable over R.

a) If a, b are real numbers, show that

la+o]"<2°(lal”+ [B[).

(The condition p > 1 is essential here.)
b) Show then that L,(R, u) is a linear space, i.e., f, g € L, implies that
J+ g € L, and that f € L, and a real imply af € L,. Define | f|, =

1/p
_H \. [ f(z) |7 &tu_ . We shall shortly see that L, is a normed space with
R

I £ ||l» 28 norm.

6. a) Suppose p > 1. Define ¢ by the equation 1/p + 1/¢ = 1. p and ¢
are called conjugate exponents. Let v = f(u) = u*". Thenu = g(v) = v/,
Verify that the hypotheses of Young’s inequality (§47, Ex. 5) are satisfied
and that F(u) = u’/p, G(v) = v?/q, and that therefore

w < u®/p + vY/q,

with equality if, and only if, u® = »%.
b) (HoLper INEQUALITY.) Suppose f € L,(R, u), g € Ly(R, 1), with
P, ¢ conjugate exponents. Show that

f(z)g(z) € Lu(R,p) = L

and

\KQVQQV %. < \w | f(z)g(x) _.§

<([1r@ra)” ([ 1o ra)"

1o 1l g lle-

This result may be obtained as follows: It is trivial if |||, = 0 or
[l glle = 0. Otherwise, put
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wu=f@ 1/ 1fl.,  ov=1g@) /gl

in the result of a), and integrate over R (see vol. 1, p. 20).
¢) (Mingowskr’s INEQuaLITY.) If f, g € L,(R, 1), then

IF+gle <H7flls+Ngls,

or, in terms of integrals,

(L1 + o ra)” < ([ 151 a)+ ([ 10 Paw)”

If ||f + ¢gll, = 0, then the result is clear. If ||f + ¢ |l, > 0, observe
that

[f(2) +9() I < | f(2) || f(=) + g(e) 7 + | g(2) | | f(=) + g(=) |7,
[f(z) + g(=) "7 € L.
Apply Holder’s inequality to each term on the right to obtain

[is+orans(fis+ora) ash+ 1ol

It is now clear that L (R, ) with norm Il 7 ll» is a normed linear space for
p > 1. Note also that if p = 2, then ¢ = 2, and Hélder’s inequality re-
duces to the Schwarz inequality.

§61. Mean convergence. Dense subsets of L,

The introduction of a norm in L, determines a new notion of convergence
for square integrable functions:

o=t (in Ly)
if

lim e '\ Q.:A&v - \.A&v“_u dp = 0.

This type of convergence of functions is called mean convergence, or»
more precisely, mean square convergence.

Let us consider the relation of mean convergence to uniform convergence
and convergence a.e. (see Chapter VI).

TareoreM 1. If a sequence {f,(x)} of functions of Ly converges uniformly
to f(x), then f(x) € Ls, and {f,(x)} is mean convergent to f(z).

Proof. Suppose that € > 0. If » is sufficiently large,

_\aﬂ&v - f(x) _ <e

whence
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[ 1) = 1) du < GulR).

The theorem follows at once from this inequality.

Theorem 1 implies that if an arbitrary f € L, can be approximated with
arbitrary accuracy by functions f, € M C L, in the sense of uniform con-
vergence, then it can be approximated by such functions in the sense of
mean convergence.

Hence an arbitrary function f € L, can be approximated with arbitrary
accuracy by simple functions belonging to L, .

We prove that an arbitrary simple function f € L., and consequently
an arbitrary function of L., can be approximated to any desired degree of
accuracy by simple functions whose set of distinct values is finite.

Suppose that f(z) assumes the values %;, -+, ¥., --- on the sets
Ey,---, E,,---. Inasmuch as f* is summable, the series

M: m\amtANwav = \.%NA&V &t

converges. Choose an N such that
2o Unu(Ba) < ¢
and set
f(x)  (z € E;,i <N),

@) =10 (z € B:,i> N).

Then

JU@) = £u@F du = S vu(Ba) < 6

that is, the function fy(z), which assumes a finite set of values, approxi-
mates the function f with arbitrary accuracy.

Let R be a metric space with a measure possessing the following property
(which is satisfied in all cases of practical interest): all the open and closed
sets of R are measurable, and

(%) w*(M) = inf {u(G); M € G}

for all M C R, where the lower bound is taken over all open sets G con-
taining M. Then we have
THEOREM 2. The set of all continuous functions on R s dense in Ly .
Proof. In view of the preceding discussion, it is sufficient to prove that
every simple function assuming a finite number of values is the limit, in
the sense of mean convergence, of continuous functions. Furthermore,
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since every simple function assuming a finite set of values is a linear com-
bination of characteristic functions x () of measurable sets, it is enough
to carry out the proof for such functions. Let M be a measurable set in
the metric space R. Then it follows at once from the Condition () that
for every e > 0 there exists a closed set ', and an open set Gy such that

FyC M C Gy, w(Gu) — u(Fy) < e
We now define
e(z) = p(x, R\ Gu)/lp(z, R\ Gx) + p(z, Fu)l.

This function is0 on R \ G and 1 on F,, . It is continuous, since p(x, Fy),
p(z, B\ Gy) are continuous and their sum does not vanish. The function
xu#(z) — ¢(z) is bounded by 1 on Gy \ Fy and vanishes in the comple-
ment of this set. Consequently,

[ ) = p@)F du <

and the theorem follows.

THEOREM 3. If a sequence {f,(x)} converges to f(x) in the mean, it con-
tains a subsequence {f,,(x)} which converges to f(x) a.e.

Proof. If {f.(x)} converges in the mean, it is a fundamental sequence in
L, . Therefore, repeating the reasoning in Part a) of the proof of Theorem
4, §50, we obtain a subsequence {f.,(z)} of {f.(x)} which converges a.e.
to a function ¢(z). Furthermore, Part b) of the same proof shows that
{fai(z)} converges to ¢(z) in the mean. Hence, o(z) = f(z) a.e.

* It is not hard to find examples to show that convergence in the mean
does not imply convergence a.e. In fact, the sequence of functions {f,}
defined on p. 45 obviously converges in the mean to f = 0, but (as was
shown) does not converge a.e. We shall now show that convergence a.e.
(and even everywhere) does not imply mean convergence. Let

n [z € (0, 1/n)],

0 for all remaining values of z.

fa(z) =

It is clear that the sequence {f,(z)} converges to 0 everywhere on [0, 1],
but that N

\o_&w@v dr = n — o,

The Chebyshev inequality (§43, Theorem 9) implies that if a sequence
is mean convergent, it converges in measure. Therefore, Theorem 3, which
we have proved in this section independently of the Chebyshev inequality,
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follows from Theorem 4, §41. The relations between the various types of
convergence of functions can be schematized as follows:

Uniform Convergence

! |

Mean Convergence —_— » | Convergence A.E.

-

where the dotted arrows mean that a sequence converging in measure
contains a subsequence converging a.e. and that a sequence converging
in the mean contains a subsequence converging a.e. *

EXERCISES

L. If {fu(z)} converges to f(z) in the mean and {f,(z)} converges point-
wise a.e. to g(z), then f(z) = g(x) a.e. on R.

2. a) If {fu(x)} © Ls, {f.(z)} converges to f(x) pointwise a.e. and
|fa(z) | < g(z), g € La, then {f,(z)} converges in the mean to f(z), ie.,
[ fa = flz—0.

- b) The corresponding result obtains for L, (p > 1).

3.2) If [[fa — fll: > 0, then || fu [ls = [ f [l2 ; hence

fim, .o \ | fa(@) | du = \ | 7(2) [* du.

b) The corresponding result obtains for L, (p > 1).
4. a) Let {f.(x)} converge to f(z) in the mean and suppose g(z) € Ly.
Then {f.(x)g(z)} converges to f(x)g(z).
b) More generally, if || f» — fll: = 0 and || g. — gz — O, then
| fagn — fg lls— 0.
¢) Similar results obtain for f,, f € L?; g., g € L% with 1/p +
1/g=1,p > 1. ;

Convergence In Measure

d) Let B = [a, b], and let u be linear Lebesgue measure. Then { fa}
converges to f in the mean implies that

lit. e \ﬁ P@a=[ j@d @<m<b).

[a,20]

Hint: Choose



o
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1 (e £z < x),

QAav - 0 AS > aov.

Show that g € L,.

§62. L, spaces with countable bases

The space L. of square integrable functions depends, in general, on the
choice of the space R and the measure u. To designate it fully it should be
written as Lo(R, u). The space L:(R, x) is finite-dimensional only in excep-
tional cases. The spaces Ly(R, u) which are most important for analysis
are the spaces which have infinite dimension (this term will be explained
below).

To characterize these spaces, we need an additional concept from the
theory of measure.

‘IL?\ We can introduce a metric in the collection 9t of measurable subsets of

' the space R (whose measure we have assumed to be finite) by setting
p(4, B) = u(4 A B).
If we'identify mmﬁmm and B for which u(4 A B) = 0 (that is, we consider

sets“whieh-are the same except for a set of measure zero to be indistin-
guishable), then the set I together with the metric p becomes a metric
space.

DEerFINITION. A measure p is said to have a countable base if the metric
space It contains a countable dense set.
./ In other words, a measure p has a countable base if there is a countable

set
@"?A:w ASHHqu...v

of measurable subsets of R (a countable base for the measure x) such that
for every measurable / C R and ¢ > 0 there is an 4, € D for which

p(MA4) <e

In particular, a measure u obviously has a countable base if it is the exten-
sion of a measure defined on a countable collection S,, of sets. Indeed, in
that case the ring R(Sn) (which is obviously countable) is the required
base, in view of Theorem 3, §38.

In particular, Lebesgue measure on a closed interval of the real line is
induced by the set of intervals with rational endpoints as elementary sets.
Since the collection of all such intervals is countable, Lebesgue measure
has a countable base.

The product p = w3 ® us of two measures with countable bases also has
a countable base, since, as is easily seen, the finite unions of the products
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of pairs of elements of the bases of u; and , form a base for p = 1 ® ps.
Therefore, Lebesgue measure in the plane (as well as in n-dimensional
space) has a countable base.

Suppose that

(1) -

is a countable base for u. It is easy to see that the base (1) can be extended
to a base

(2) »A:...,hau...

of u with the following properties:

1) The base (2) is closed under differences.

2) R is an element of the base (2).

Conditions 1) and 2) imply that (2) is closed under finite unions and
intersections. This follows from the following relations:

»\#HD &.m = k&.u/ Ahu/x&nv‘
Ai1ud; = R\ [(R\ 41) n (R\_4,)].

THEOREM. If a measure u has a countable base, then Ly(R, u) contains a
countable dense set.
Proof. The finite sums

(3) 2k eifi(@),

where the ¢, are rational numbers and the f;(z) are characteristic functions
of the elements of the countable base of u, form the required base for
Ly(R, ).

For, as we have already shown in the preceding section, the set of simple
functions assuming only a finite number of values, is everywhere dense in
L, . Since it is obvious that an arbitrary function of this set can be approxi-
mated with arbitrary accuracy by functions of the same form, but assum-
ing only rational values, and since the set of functions of the form (3) is
countable, to prove the theorem it is sufficient to show that an arbitrary
simple function f(z), assuming the values

Ag¥, oo A*, oee

Y1, "y Yn (y; rational)

on the sets
Eiy---,B, [U;E;=R,E:nE;=0 (i3],

can be approximated with arbitrary accuracy by functions of the form
(3) in the sense of the metric in L, . In view of this remark, we may assume
without loss of generality that the base for u satisfies 1) and 2).

\
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By definition, for every ¢ > 0 there exist sets 4, y **+, 4, of the base
for u such that p(Ey, Ax) < ¢ that is,

Bl(Ee \\4Ar) u (4 \\ Ep)] < e
We set
kﬁnx = mu. )

bﬂ"ha/_/c.ﬁmﬁ. (2<k<n),

and define
Yr A& € m.asvv

@ =1, (z € R\ UL, 47).

It is easy to see that
wlz:f(z) = f*(2)}

is arbitrarily small for sufficiently small ¢, and that consequently the inte-
gral

[ U@ = #@F du < (2 max | 3. ) ula:f0) = 54(2))

is arbitrarily small for sufficiently small e.

In view of our assumptions about the base of u, f*(z) is of the form (3).
This proves the theorem.

If R is a closed interval on the real line and u is Lebesgue measure, a
countable base in Lz(R, u) can be obtained in a more classical way: for
instance, the set of all polynomials with rational coefficients forms a base
in L, . This set is dense (even in the sense of uniform convergence) in the
set of continuous functions, and the latter are a dense set in Ly(R, ).

In the sequel we restrict ourselves to spaces Ly(R, u) with countable
dense subsets [that is, separable spaces (see §9)].

EXERCISES

1. Let X be the unit square in the plane, u the s-additive measure that
is the Lebesgue extension of the measure defined in §35, Ex. 2 (see also
§37, Ex. 3). Note that to obtain the Lebesgue extension we must use the
method of §39 since the semi-ring of horizontal cells has no unit.

Show that u is not separable.

Hint: Any A € S, is a countable union of horizontal line segments;
hence, any countable collection of elements of S, contains a countable set
of horizontal line segments {A4,}. We can choose y, € [0, 1] such that

\

\
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Ay ={(z,9)0<z< 1,y =y
is disjoint from all these. Then show that
b?Ao ) hsv = tTAo D\»sv =1

for all n.

2. a) Since u(R) < «, a simple measurable function with only finitely
many distinct values belongs to L,(R, u) for every p > 1.

b) The discussion in §51 can be paralleled for the present case to show
that every f € L, can be approximated in the mean of order p (ie., in
the metric of L,) by simple functions assuming only finitely many values.

¢) The procedure of §52 can now be imitated to show that if x has a
countable base, then L, (R, u) is separable for p > 1.

d) It follows from a) and ¢) that forr,s > 1, L,(R, u) is dense in L,(R, n)-

§63. Orthogonal sets of functions. Orthogonalization

In this section we consider functions f € L, defined on a measurable set
R with measure u, which we assume to have a countable base and to satisfy
the condition u(R) < . As before, we do not distinguish between equiva-
lent functions.

DermviTION 1. A set of functions

(1) ' e1(2), -+, en()

is said to be linearly dependent if there exist constants ¢;, -, ¢, , not all
zero, such that

(2) aei(r) + capo() + -+ + capa(z) =0
a.e. on R. If, however, (2) implies that
AWV hn"..."ﬁﬁucn

then the set (1) is said to be linearly independent.

Clearly, a linearly independent set cannot contain functions equivalent
toy(z) = 0.

DeriNTION 2. An infinite sequence of functions

AAHV Snﬂ&vu tt €=A§v~ te
is said to be linearly independent if every finite subset of (4)-is linearly
independent.

We denote by

E"N—&Aﬁug Sty Py ...v "Emﬁaw

the set of all finite linear combinations of functions of (4). This set is
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called the linear hull of (4) (or the linear mansfold generated by {¢}). We
let

M= N—Nﬁﬁu. tyPn,y ...v = N—Nmﬁww

denote the closure of M in L, . M is called the closed linear hull of (4) (or
the subspace generated by {en}).

It is easily seen that M7 consists precisely of the functions f € L, which
can be approximated by finite linear combinations of functions of (4) with
arbitrarily prescribed accuracy. .

DermviTioN 3. The set of functions (4) is said to be complete (sometimes
closed) if

N-N = N\n .
Suppose that L, contains a countable dense set of functions

.\.u. ...7\.‘:

Deleting from this set those functions which are linearly dependent on the
preceding functions in the sequence, we obtain a linearly independent set
of functions

Qﬁu ouan’u LY

which, as is easily seen, is complete:
If L, contains a finite complete set (1) of linearly independent functions,
then

ﬁn" N—N‘Aﬁuu ...vﬁav "N—&.Aﬂu‘ ...uﬁav

is isomorphic to Euclidean n-space. We say Ls is n-dimensional. Otherwise,
we call L, infinite-dimensional.

The space L, is infinite-dimensional in all cases of interest in analysis.

Obviously, in order that (4) be complete it is sufficient that it be possible
to approximate every function of a dense subset of L, with arbitrary ac-
curacy by linear combinations of functions of (4).

Let B = [a, ] be a closed interval on the real line with the usual Le-
besgue measure. Then the set of functions

Amv " Hv&-&uu...-&au...

is complete in Ly(R, u). .

For, according to the Weierstrass theorem (see Vol. 1, p. 25) the set of
linear combinations of functions (5) is dense in the set of all continuous
functions. The completeness of the set (5) now follows from this remark
and Theorem 2, §51. /

\
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Two functions f(x) and g(z) of L, are said to be orthogonal if
() = [ £=)g(@) du = 0.

We shall call every set of functions ¢1, +++, ¢s, *++, which are distinct
from zero and are pairwise orthogonal, an orthogonal set. An og.womoum_ .
set is said to be normalized or orthonormal if || ¢, || = 1 for all n; in other
words,

GL, vy Puy e
is an orthonormal set of functions if

0 (CEIN
1 (¢ = k).

ExampLEs: 1. A classical example of an orthonormal set of functions on
the closed interval [—, 7] is the set of trigonometric functions

(0,00 = [ eil@)on() du =

@), ()7 cos z, (r) Y eos 2z, -+, (x) Fsin z, (x)? sin 2%, -,
2. The polynomials
Pu(z) = (2™)™ (d"(2" — 1)"]/dz") (n=0,1,2,--),

called the Legendre polynomials, form an orthogonal set of functions on
1—1, 1]. An orthonormal set consists of the functions

[3(2n + 1)PPa().

It is easily seen that an orthonormal set of functions is linearly inde-
pendent. For, multiplying the relation

o1+ co0 + Can =0
by ¢: and integrating, we obtain
ci(pi, ¢i) = 0,

and since (¢;, ¢;) > 0,¢; = 0. . | ,
We note further, that #f the space L, contains a countable %3%. set
fiy ooy fuy o+, then an arbitrary orthonormal set of functions {¢.} is at

most countable.
To see this, suppose that a # 8. Then

|l oa — 08l = 2%
For every « choose an f, from the dense subset such that
loa = full < 27
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Clearly, fo > fs if @ # B. Since the set of all fa is countable, the set of
¢« 18 at most countable.

An orthonormal base is of great importance in studying finite-dimen-
sional spaces. In this connection an orthonormal base is a set of orthogonal
unit vectors, whose linear hull coincides with the whole space. In the
infinite-dimensional case the analogue of such a base is a complete ortho-
normal set of functions, that is, a set

Gly **yPn,y e

such that

Hv AMQ-.u Gav = O )

2) M(er, -y n, ) = L.
We gave examples of orthonormal sets of functions on the intervals [—m,7]
and [—1, 1] above. The existence of a complete orthonormal set of func-
tions in an arbitrary separable space L, is a consequence of the following
theorem:

TaEOREM. Suppose that the set of functions

A@V .\.uv...v\.:n...
18 linearly independent. Then there exists a set of functions
A.Nv PrLy; * 3y Pn,y *°"

satisfying the following conditions:
1) The set (7) is orthonormal.
2) Every function ¢, is a linear combination of the Sfunctions fy, «++, fu 2

Pn = Qﬁr\wl_l@:&.ml_l ot .+.Q:=.~..=u

with @nn # 0.
3) Every function f, is a linear combination of the functions

.\.a = @auﬁw + .- + @a:ﬁan

With by, = 0.

Every function of the set (7) is uniquely determined (except for sign) by
the Conditions 1)-3).

Proof. The function ¢;(z) is uniquely determined (except for sign) by
the conditions of the, theorem. For,

o1 = Guft,
(p1,01) = axd 1, /1) =1,
whence

bu = Vau = (fi, i), o= =, ).

§53] ORTHOGONAL SETS OF FUNCTIONS. ORTHOGONALIZATION 95

Suppose that the functions ¢ (K < n) satisfying 1)-3) have already been
determined. Then f, may be written as

.w.a = Gaﬂ&.l_l e +®a.=l~€:l~+\~$«

where (b, , o) = 0 (k < n).
Obviously, (ks , h,) > 0 [the assumption that (h, , h,) = 0 would con-
tradict the linear independence of the set (6)].

Set
on = (hu, ha)Hha .
Then
(ens0i) =0 (2 <n),
(en,en) =1,

.%: = @ausu I_l cee vaaﬁa _”@:s = Q«a ) w«:vw # O“_g

that is, the functions ¢,(z) satisfy the conditions of the theorem. The last
assertion of the theorem is an immediate consequence of the linear inde-
pendence of the set f;, - -+, fn.

The transition from a set (6) to the set (7) satisfying 1)-3) is called an
orthogonalization process.

Obviously,

.N—&.A.wauu ...w\.:» ...v "EASmu Py ...vw

hence, the sets (6) and (7) are either both complete or not complete.
Therefore, the set (6) may be replaced by the set (7) in all problems of
approximating functions f by linear combinations of the functions (6).
We said above that the existence in L, of a countable dense set implies
the existence of a countable complete set of linearly independent functions.
Orthogonalization of the latter set yields a complete countable orthonormal

set.
EXERCISES
1. With the notation of the theorem in this section,
Ja=bmer+ -+ + bungn.
Show that
bai = (fa, @s) (1<i<n)
2. Show that the set of functions
Lz, oo,z oee

is linearly independent on any interval [a, b).
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3. For R = [0, 1] and x linear Lebesgue measure, show that Ly(R, 1)
is infinite-dimensional.

4. Suppose that {fi(z), ---, fu(z)} C L,. The Grammian of {f} is the
determinant

Q:"QO& A\o...w.u.v AH Ms.u.u.tAIQ@v.
Show that {f} is linearly dependent if, and only if, G, = 0. Hints: Suppose
{f} is linearly dependent. Multiply the dependency relation by f;
(1 < ¢ < n) and integrate to obtain a system of homogeneous equations
with a nontrivial solution. Conversely, if G, = 0, then the same system
has a nontrivial solution a;, - --, a, . Show that (2sadf:, Siaif:) = 0.
5. a) Show that the Legendre functions P.(z) given in the text form
an orthogonal set.

b) mwos.gma Il N,.Aav | = 2%2n + 1) Hint: P, is a polynomial of
degreen. Use integration by parts repeatedly to show that P,(z) is orthog-
onal to z* (0 <k <n).

§64. Fourier series over orthogonal sets. The Riesz-Fisher theorem

If e, e, -, e, is an orthanormal base in Euclidean n-space R™ , then
every vector ¢ € R™ can be written in the form

AHV T = MNHH CrCr o
with
¢ = (z, e).

The purpose of this section is, in a sense, to generalize (1) to the infinite-
dimensional case.
Let

(2) Ply ) Pn, e

be an orthonormal set and suppose that f€L,.

) We pose the following problem: For prescribed determine the coeffi-
cients o (1 < k < n) so that the distance, in the sense of the metric in
L, , between f and the sum

A..wv rﬁa = Mﬂlu QP

is the least possible. /
Set cx = (f, ¢r). Since the set (2) is orthonormal,

4) f = 8all’ = (f — Zitcwer, f — opa cuon)
= (1,0) = 20, Zimawor) + (Cho avon, s ;)
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I \__u -2 MMIH axcr + Mnnu o
= .\.__» - Mm.nh an + Mwﬂp Agh - Snvn.

It is clear that the minimum of (4) is assumed when the last term is zero,
ie., if

I

(5) ar = Cp (1 <Ek<Ln).
In that case
(6) If—Sull® = (f,f) — b0’

DerFNiTION. The numbers
Cr = Q. ) Sav

are called the Fourier coefficients of the function f € L, relative to the
orthonormal set (2), and the series

MNL Crpr

(which may or may not converge) is called the Fourier series of the function
f with respect to the set (2).

We have proved that of all the sums of the form (3) the partial sums
of the Fourier series of the function deviate least (in the sense of the metric
in L,), for prescribed n, from the function f. The geometric meaning of this
result may be explained as follows: The functions

= Doi cuen

are orthogonal to all the linear combinations of the form

Mwnp Brer ,

that is, these functions are orthogonal to the subspace generated by the
functions ¢1, - -+, ¢, if, and only if, (5) is satisfied. (Verify this!) Hence,
our result is a generalization of the well known theorem of elementary
geometry which states that the length of the perpendicular from a given
point to a line or a plane is less than that of any other line from the point

to the given line or plane.
Since || f — Sa [I* = 0, relation (4) implies that

2 < FIR

where n is arbitrary and the right side is independent of n. Hence, the
series Y w1 Cx converges, and

) , 2’ < FIN
This is the Bessel inequality. .
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We introduce the following important
DerFmirioN. An orthonormal set is said to be closed (sometimes com-
plete) if

(8) 2 = |fIf

for every f € L, . The relation (8) is called Parseval’s equalty.

It is clear from (6) that the set (2) is closed if, and only if, the partial
sums of the Fourier series of every function f € L, converge to f in the
metric of L, (that is, in the mean).

The notion of a closed orthonormal set is intimately related to the com-
pleteness of a set of functions (see §53).

TaEOREM 1. In L every complete orthonormal set is closed, and conversely.

Proof. Suppose that {¢,(x)} is closed; then the sequence of partial sums
of the Fourier series of every f € L, is mean convergent. Hence the linear
combinations of the elements of the set {¢.(z)} are dense in L, that is,
{¢a} is complete. Conversely, suppose that {,} is complete, that is, that
every f € L, can be approximated with arbitrary accuracy (in the sense
of the metric in L) by linear combinations

Mn.up Arpr

of elements of the set {¢} ; then the partial sums

Mm.n_ CrPrk

of the Fourier series of f yield, in general, a still better approximation of /-
Consequently, the series
MNI_ Crr

converges to f in the mean, and Parseval’s equality holds.

In §53 we proved the existence of a complete orthonormal set in L.
Inasmuch as closure and completeness are equivalent for orthonormal sets
in Ly, the existence of closed orthonormal sets in L, need not be proved,
and the examples of complete orthonormal sets in §53 are also examples
of closed sets.

Bessel’s inequality (7) implies that in order that numbers ¢, , c;, - - be
the Fourier coefficients of a function f € L, with respect to an orthonormal
set it is necessary that the series

/ MMHH o.%

converge. In fact, this condition is not only necessary, but also sufficient.
This result is stated in

TaeoreMm 2. (TeE Rimsz-Fisuer THEOREM.) Let {p,} be an arbitrary
orthonormal set tn Ly , and let the numbers
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QHu oo.u?v coe

be such that the series

va Mumoua 9%

converges. Then there exists a function f € Ly such that
¢ = (f, ex),

and

2 e = (f, ).
Proof. Set
Jo = MML CrPrk »
Then
| fats — fa __N = || Cot1Pntt + 00+ Coip Pntp __“.v = Mnh.%t i

Since the series (9) converges, it follows, in view of the completeness of
L,, that the sequence {f,} converges in the mean to a function f € L,.
Furthermore,

(10) (e = (Fr o) + (f = fa, 00),

where the first term on the right is equal to ¢; (n > ), and the second term
approaches zero as n — o, since

I(F = Far 0l S 1F = full-lles]l.

The left side of (10) is independent of n ; hence, passing to the limit as
n — o, we obtain

A.‘.u ﬁ..v = Ci.
Since, according to the definition of f(z),
If=fall =0 (n—> ),

it follows that
2 & = (f, f).

This proves the theorem.

In conclusion, we prove the following useful theorem:

TaeorEM 3. In order that an orthonormal set of Junctions (2) be complete
it s necessary and sufficient that there not exist in L; a function not equiva-
lent to Y = 0 which is orthogonal to all the functions of (2).

Proof. Suppose that the set (2) is complete, and hence closed. If f € L,
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is orthogenal to all the functions of (2), then all its Fourier coefficients are
equal to zero. Then Parseval’s equality implies that

Q?‘.v = Mna» =0,

that is, f(2) is equivalent to ¢(z) = 0.
Conversely, suppose that {f,} is not complete, that is, there exists a
function ¢ € L, such that

(9,9) > 2iac’ lee = (g, e0)]-
Then, by the Riesz-Fisher theorem, there exists a function f € L, such that

A.\w ﬁwv = Ck, A.\...qu = Mmouuu 9“».

The function f — ¢ is orthogonal to all the functions ¢; . In view of the
inequality

A.ﬁ.\.v = MMHH 9“» < AQM vi

f — g cannot be equivalent to ¥(z) = 0. This proves the theorem.

'EXERCISES

1. Let {¢a(x)} be an orthonormal set in L, and suppose f € L, . Verify
that f — > i axes is orthogonal to all linear combinations Dois iy i,
and only if, ar = (f,ex) (1 < k < n).

2. Let {on(x)} be an orthonormal set in L, and let F C L, be dense in
L, . If Parseval’s equality holds for each f € F, then it holds for all g € L,
ie., {g.(x)} is closed.

This may be proved as follows: Let s,(f) = D r cior(z) be the nth
partial sum of the Fourier series of f € L, .

a) Iff,g € Ly, then

Il 8a(f = DIl =l 8a(f) = sa(@ < NIF = g1l
b) Parseval’s equality holds for ¢ if, and only if,

:Balvoo = Q - MSAQV = = o.

aﬁo& use the hypothesis of the exercise.
3. LetNen(2)}, {¢a(x)} be complete orthonormal sets in Ly(R, u). Let
4’ = p ® pand consider Ly(R X R, 1%).

a) The set {xam(Z, y) = @u(2)¥n(y)in,m = 1,2, - - -} is orthonormal
in Ly(R X R, ).

b) The set {x.m(x, y)} is complete.
Hint: Use Fubini’s theorem and the criterion of Theorem 3 for complete-
ness.
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§66. Isomorphism of the spaces L, and [,

The Riesz-Fisher theorem immediately implies the following important

TaroREM. The space Ly is 1somorphic to the space Iz .

[Two Euclidean spaces R and R’ are said to be isomorphic if there is a
one-to-one correspondence between their elements such that

reod, yoy

implies that

Dz+yea +vy,

2) ax &> ax’,

3) (z,y) & (2, ¥).

Obviously, two isomorphic Euclidean spaces, considered merely as
metric spaces, are isometric.]

Proof. Choose an arbitrary complete orthonormal set {¢,} in L. and as-
sign to each function f € L, the sequence ¢;, -+, ¢,, + - of its Fourier
coefficients with respect to this set. Since M Gl < 0, (€1, vty Cny )
is an element of I, . Conversely, in view of the Riesz-Fisher theorem, for
every element (¢;, +++, C,, +++) of I there is an f € L, whose Fourier
coefficients are ¢;, - -+, ¢, , + -+ +. This correspondence between the elements
of L, and I, is one-to-one. Furthermore, if

(6)] @ @
.\. IAQu y 5 Cn s...v

and
® o (€@, -, 6®, --),
then
O 150G ® 4 6@ o 6® 4 a®, )
and

Nﬁ\.ﬁv > ANOOHQQ» ceey, Nnewvcvu ese vn

that is, addition and multiplication by scalars are preserved by the cor-
respondence. In view of Parseval’s equality it follows that

A 1 v QE» MSJ = w.enu 9.8 aasv.
For, the relations
G0 = Z@®,  §5®) = X (@®)
and
GO + 12,70 + 12y = (F©, fP) + 2, 72) + (f2, 1?)
= 3 (e + ¢,
= 3 () +2 T a®%® + 3 (62)



102 SQUARE INTEGRABLE FUNCTIONS [cH. VII

imply (1). Hence the above correspondence between the elements of L,
and [, is an isomorphism. This proves the theorem.

On the basis of this theorem we may regard I, as a “coordinate form?”
of Ly . It enables us to carry over to L, results previously established for
I . For instance, we proved in Chapter III that every linear functional in
lyis of the form

e(z) = (z,9),

where y is an element of l; uniquely determined by the functional ¢. In
view of this and the isomorphism between L, and I, it follows that every
functional in L, is of the form

o) = (1,0) = [ F@)a(a) du,

where g(z) is a fixed function of L, . We proved in §24 that I, = I, . Hence
bn = Nﬁ .

The isomorphism between L, and I, established above is closely related
to the theory of quantum mechanics. Quantum mechanics originally con-
sisted of two superficially distinct theories: Heisenberg’s matrix mechanics
and Schrédinger’s wave mechanics. Schrodinger later showed that these
two theories are equivalent. From the mathematical point of view, the
difference between the two theories reduced to the fact that the Heisen-
berg theory used the space I, , while the Schrédinger theory used the space
L,.

EXERCISES

1. Let {¢a(z)} be an orthonormal set in L, . Then nonequivalent func-
tions f, g have distinet Fourier series, i.e., for some n, (f, ¢n) #= (g, ¢a)
if, and only if, {¢,} is complete. This result justifies the statement in the
text that f < (¢1, €2, ++-, ¢a, ---) is a one-to-one correspondence. Hint:
Apply Theorem 3 of §54.

2. Let {¢n} be a complete orthonormal set in Ly(R, 1) and suppose f € Ls .
The Fourier series of f(x) can be integrated term by term over an arbi-
trary measurable subset A of R, i.e.,

) [#@ du = Ten o [ entz) d,

where ¢ = (f, ¢x) is the kth Fourier coefficient of f(z).
Hint: Let f = f, f® = x4 in equation (1) of the theorem of this sec-
tion.

Chapter IX

ABSTRACT HILBERT SPACE. INTEGRAL EQUATIONS
WITH SYMMETRIC KERNEL

In the preceding chapter we proved that a separable L, is isomorphic
with 75, i.e., that they are two essentially different realizations of the same
space. This space, usually called Hilbert space, plays an important part in
analysis and its applications. It is often convenient not to restrict oneself,
as previously, to various realizations of Hilbert space, but to define it
axiomatically, for instance, as Euclidean n-space is defined in linear algebra.

§66. Abstract Hilbert space

Dermition 1. A set H of arbitrary elements f, g, -+ -, h, - - is called an
(abstract) Hilbert space if :

I. H is a linear space.

IL. An inner product is defined in H, i.e., every pair of elements f, g is
assigned a real number (f, g) such that

Hv A\. Qv = Aﬁv\vu

Mv AQ.\.M Qv = QQ.u QVu

wv A.w.n +\»uQv = A.\.uuQv + A.\.nuﬁv“

4) (f,f) > 0if f = 0.
In other words, Conditions I and II mean that H is a Euclidean space.
The number || f || = (f, f)} is called the norm of f.

III. The space H is complete in the metric p(f, g) = ||f — ¢ .

IV. H is infinite-dimensional, that is, for every natural number n, H
contains 7 linearly independent vectors.

V. H is separable. (This condition is often omitted; H may then be
nonseparable.) Then H contains a countable dense set.

It is easy to give examples of spaces satisfying all the axioms. One such
is the space I, discussed in Chapter II. In fact, I, is an infinite-dimensional
Euclidean space, since the elements

e = (1,0,0,---,0, --
e=(0,1,0---,0, -
es = (0,0,1,--+,0, -

D R T

N~ N

are linearly independent; it was proved in §§9 and 13 of Chapter IT that
it is complete and separable. The space L, of functions square integrable
with respect to a separable measure, which is isomorphic to I, also satisfies
the same axioms.

103
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The following proposition holds:

All Hilbert spaces are isomorphic.

To prove this, it is obviously sufficient to show that every Hilbert space
is isomorphic to the coordinate space l; . The latter assertion is proved by
essentially the same arguments as were used in the proof of the isomorphism
of H\» and Nm H

1. The definitions of orthogonality, closure and completeness, which
were introduced in §53 for elements of L,, can be transferred unchanged
to abstract Hilbert space.

2. Choosing in H a countable dense set and applying to it the process of
orthogonalization described (for L,) in §53, we construct in H a complete
orthonormal set, that is, a set

(1) By, oovyhn, -
satisfying:

a)
0 (¢ = k),
1 (¢ = k).

b) The linear combinations of the elements of (1) are dense in H.

3. Let f be an arbitrary element of H. Set ¢ = (f, hx). Then the series
> ¢ converges, and >~ ¢’ = (f,f) for an arbitrary complete orthonormal

set {hx} and f € H.
4. Suppose again that {hs} is a complete orthonormal set in H. If

QS. ’ ?«v =

CL, "y Cny et
is a sequence of numbers such that
26 < =,
there exists an f € H such that
ce = (f, ),
and
2 = (f,1).

5. Hmw clear froin what we have said that an isomorphism between H
and lscan be realized by setting

.WAIVAanv ***3Cny ...v»
where
Cr = A.ﬁ N.Snv
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and
Bayhay v by, +ne

is an arbitrary complete orthonormal set in H.
The reader may carry out the details of the proof as in §§53-55.

EXERCISES
1. a) The norm || f || in H satisfies the parallelogram law:

I+l + 1A= 20" = 20141 + 1 £17).

b) Conversely, if X is a complete separable normed linear space in
which the norm satisfies the parallelogram law, then an inner product may
be defined in X by

Gra) =S+ gl = 17— gl

Moreover, (f, f) = | f " and X becomes a Hilbert space. Hints: (i) Es-
tablish first that (z, y) is a continuous function of z. (ii) Show by induc-
tion that (nz, y) = n(x, y). Itwill then readilyfollow that (az,y) = a(z, y).
(iii) Then establish that (21 + 22, y) = (21,%) + (22, y). The other
properties of an inner product are immediate.

2. Suppose that A C H has the property that f, g € A implies that
3(f + ¢) € A (thisis true, in particular, if 4 is convex). Let

d=inf{[lf]:f€ 4}

If {fa} C A has the property that lim,., || f. || = d, show that {f,} is a
fundamental sequence in H.

Since H is complete, it follows that lim,.. f, = f exists in H. If 4 is
closed, then f € A.

Hint: The parallelogram law yields

13 = fll = 3 1Fa I + 31/ I” = 13 + £
SENHIP+ 307w = d
3. In Def. 2 of §50 it is stated that the Schwarz inequality:

G < IPlg I

holds. The author proves Schwarz’s inequality in several concrete cases
(see vol. 1, pp. 17, 18). Prove that the inequality holds in H (only Axioms
I and IT of §56 are required).

Hint: Suppose that f, ¢ € H and that ¢ is real. The quadratic polynomial
with real coefficients in ¢: (f 4 ¢(f, g)g, f + (f, g)g) is nonnegative; hence,
its- discriminant must be nonpositive.

It
[N

(S
[N
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4. The inner product (f, g) is a continuous function of f and g, i.e., if
[fa = fll > 0and || g. — g || = Ofor {f.}, {ga}, £, g in H, then (f., ga) —
£, 9)-

5. The following is an example of a nonseparable Hilbert space. Let H
be the collection of all real-valued functions defined on [0, 1] with f(z) # 0
for only countably many 2 € [0, 1], and such that if f(z,) > 0 for {z,},
then > [f(2.)]’ < «. The addition of functions and multiplication by
real numbers is defined in the usual way, i.e., pointwise.

a) Define (f, g) analogously to the scalar product in I, and show
that H satisfies I, IT, ITI, IV in Def. 1.

b) Show that H is not separable. Hint: Show that H contains un-
countably many disjoint open spheres.

6. If in the preceding example we restrict the collection H further to
those f(x) whose values are not zero for only finitely many z, then with
the same operations H is also an incomplete metric space. That is, find a
fundamental sequence in H whose limit is not in H. Note that the limit
of such a sequence will be an element of H in Ex. 5.

§67. Subspaces. Orthogonal complements. Direct sums

In accordance with the general definitions of Chapter III, §21, a linear

manifold in H is a subset L of H such that if f, g € L, thenof + 8g € L
Aor arbitrary numbers « and 8. A subspace of H is a closed linear manifold

in H.

We give several examples of subspaces of H.

1. Suppose that & € H is arbitrary. The set of all f € H orthogonal to
h is a subspace of H.

2. Let H = I, that is, all the elements of H are sequences

A.&Hu ey T, ...v

of numbers such that > 2> < . The elements satisfying the condition
z; = 2, form a subspace.

3. Let H be the space L, of all square summable functions on a closed
interval [a, b] and suppose that a < ¢ < b. We denote by H, the collection
of all functions of H identically zero on [a, c]. H, is a subspace of H. If
¢ < ¢, then H,;, D H,,, and H, = H, H, = (0). Hence we obtain a
continuum of subspaces of H ordered by inclusion. Each of these subspaces
(with the exeeption, of course, of H,) is infinite-dimensional and isomorphic
to H.

The verification of the fact that each of the sets described in 1-3 is
indeed a subspace of H is left to the reader.

Every subspace of a Hilbert space is either a finite-dimensional Euclidean
space or itself a Hilbert space. For, Axioms I-IIT are obviously satisfied
by a subspace and the validity of Axiom V follows from the following lemma:

§57] SUBSPACES. ORTHOGONAL COMPLEMENTS. DIRECT SUMS 107

LemMA. If a metric space R contains a countable dense set, every subspace
R’ of R contains a countable dense set.

Proof. [TraNs. NotEe. The proof in the original was incorrect. We have
therefore substituted the following proof.]

We assume that R’ @, otherwise there is nothing to prove.

Let {£.} be dense in R. For every pair of natural numbers n, k choose a
{ar € R’ (if it exists) such that

bmma ) w.:av A H\Mwn.

Then {¢ue ;m,k = 1,2, - - -} is dense in R’. To see this, suppose that z € R’
and ¢ > 0. Choose an s such that 1/s < . Since {£,} is dense in R and
¢ € R, there is an m such that p(£, , x) < 1/2s. Hence { . exists and

P(Z, $ms) < p(%, Em) + p(Em, ms) < 1/25 + 1/25s = 1/s < e.

The existence in Hilbert space of an inner product and the notion of
orthogonality enable us to supplement substantially the results of Vol. 1 on
subspaces of arbitrary Banach spaces.

By orthogonalizing a countable dense sequence of elements of an arbi-
trary subspace of a Hilbert space, we obtain

TrEoREM 1. Every subspace M of H contains an orthogonal set {¢,} whose
linear closure coincides with M :

M = M(e, ey Pn, ).
Let M be a subspace of H. Denote by
M'=HeM

the set of ¢ € H orthogonal to all f € M. We shall prove that M’ is also
a subspace of H. The linearity of M’ is obvious, since (g1, f) = (ge, =0
implies that (aug1 + a2, f) = 0. To prove closure, suppose that gn € M’
and that g, converges to g. Then

AQVR.V = mgzls AQ: ~.\.v =0

for all f € M, and consequently g € M.

M’ is called the orthogonal complement of M.

From Theorem 1 it easily follows that:

TaEOREM 2. If M is a subspace of H, every f € H is uniquely representable
in the form f = h + K, where h € M, h' € M.

Proof. We shall first prove the existence of the decomposition. To this
end, we choose in M a complete orthonormal set {¢,} such that M =
M{p,} and set

Cp = A.ﬁ ﬁ:v.

-
h = n=1Cn@n ;
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Since D ¢, converges (by the Bessel inequality), h exists and is an ele-
ment of M. Set

K =f—nh
Obviously,
(W,ea) =0
for all n. Inasmuch as an arbitrary element ¢ of M can be written as

¢ = M GnPn y
we have
A*«ﬁ w.v = M_HH. 12 A&\w ﬂav = 0.

We now suppose that, in addition to the above decomposition f = & + ¥/,
there is another one:

f=mh+h, (hh € M,h' € M').

Then
(b, 02) = (f, 00) = Ca.
It follows that
hi = h, h' =K.

Theorem 2 implies

CoRrOLLARY 1. The orthogonal complement of the orthogonal complement of
a subspace M coincides with M.

It is thus possible to speak of complementary subspaces of H. If M and
M’ are two complementary subspaces and {¢,}, {¢,/} are complete ortho-
normal sets in M and M’, respectively, the union of the sets {¢,} and {¢,’}
is a complete orthonormal set in H. Therefore,

CoroLLARY 2. Every orthonormal set {¢.} can be extended to a set complete
wn H.

If the set {p,} is finite, the number of its terms is the dimension of M
and also the deficiency of M’. Hence

CoroLLARY 3. The orthogonal complement of a subspace of finite dimension
n has deficiency n, and conversely.

If every Vector f € H is represented in the form f = h + W, h € M,
K € M' (M’ the orthogonal complement of M), we say that H is the
direct sum of the orthogonal subspaces M and M’ and write

H=Mo M.

Tt is clear that the notion of a direct sum can be immediately generalized
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to an arbitrary finite or even countable number of subspaces: H is the
direct sum of subspaces M, - - - s My, o-e

H=M,® - --- - OM,® ---
if
1) the subspaces M are pairwise orthogonal, that is, an arbitrary vector
in M; is orthogonal to an arbitrary vector in M, (¢ #k);
2) every f € H can be written in the form

AHV .\."NSI—I...!_I&SIT... Amwepmgsvu

where Y || h, ||* converges if the number of subspaces M, is infinite.
It is easily verified that the sum (1) is unique and that

:.\.:n = M: : ha mn.

A notion related to the direct sum of subspaces is that of the direct sum
of a finite or countable number of arbitrary Hilbert spaces. If H,, H, are
Hilbert spaces, their direct sum H is defined as follows: the elements of H
are all possible pairs (h;, hs), where h, € H, , he € H,y, and the inner
product of two such pairs is

AA\S ’ &.wvv Awﬁx. &n\vv = QS. N:\v + A*@w ) NS\v.

The space H obviously contains the orthogonal subspaces consisting of
pairs of the form (&;, 0) and (0, hs), respectively; the first can be identi-
fied in a natural way with the space H, , and the second with H, .

The sum of an arbitrary finite number of spaces is defined in the same
way. The sum H = >, @® H, of a countable number of spaces
Hy,---, H,, - is defined as follows: the elements of H are all possible
sequences of the form

ho=(hy, e ha, ")

m_.sw that
Zallha | < o
The inner product (&, g) of b, g € H is equal to
2on (b, ga).
EXERCISES

1. Prove Corollary 1 of Theorem 2.

2. Prove the remark before Corollary 2: If M , M' are complementary
subspaces and if {¢,}, {¢./} are complete orthonormal sets in M , M’, re-
spectively, then their union is a complete orthonormal set in H.
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3. If M, N are orthogonal subspaces, then
M+N={f+g:f€Mg€N

is closed, and therefore a subspace. If M, N are not orthogonal, the result
need not be true. (An example can be found in Halmos, P. R., Introduction
to Hilbert Space and the Theory of Spectral Multiplicity, New York, 1951.) |

Hint: It is enough to show that if {f, + g¢.} is a fundamental sequence, ,
then {f,} and {g.} are also fundamental.

It is the purpose of the following exercises to extend some of the results
of the text to general (i.e., nonseparable) Hilbert spaces.

4, If a subspace M of H is proper, i.e., H\ M 5 @, then there exists an
element g of H, g = 0, such that g is orthogonal to every element of M.

Hint: Forh € H\ M,h — M = {h — z:x € M} is closed and convex.
Letd =inf{|h —z iz € M},d = ||h — x|, 20 € M (see §56, Ex. 2).

For arbitrary real ¢ and f € M, show that

0<|lh—(+e)IIP—Ilh— |

Show that this holds only if g = h — 2, is orthogonal to M. g will be the
required element.

5. If M, N are subspaces of H, N & M, then we denote by M © N the
orthogonal complement of N in M (consider M itself as a Hilbert space).
Show that M = N & (M © N).

Hint: Let L = N ® (M © N), with L € M and L closed (see Ex.
3). If L is properly contained in M, apply the result of Ex. 4 to obtain a
contradiction.

6. Let F(f) be a bounded linear functional on H. There exists one and
only one element g in H such that F(f) = (f, g) for every fin H [compare
with equation (1) at the beginning of the next section].

a) The uniqueness is easy to establish.

b) Let M = {f:F(f) = 0}. M is a subspace. If M = H, choose g = 0.
Otherwise, by Ex. 4 there exists an & 5 0 such that & is orthogonal to M.
Show that g = [F(h)/(h, h)]h will do.

§568. Linear and bilinear functionals in Hilbert space

The isomorphism of every Hilbert space with l; enables us to carry over
to an abstract Hilbert space the results established in Chapter III for I,.
Since every linear functional in [ is of the form

e(z) = (,a) (a € I),
it follows that:
An arbitrary linear functional F(h) in H is of the form
(1) F(h) = (b, 9),

where g depends only on F.
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Hence, the definition of weak convergence introduced in Chapter ITI
for an arbitrary linear space, when applied to H can be stated in the fol-
lowing way:

A sequence h, € H is weakly convergent to h € H if

1) the norms || &, || are bounded (see p. 90 of vol. 1);

2) for every g € H,

(ha  g) = (hy g).
Ex. 4 at the end of the section shows that 2) implies 1).
An arbitrary orthonormal sequence

Pry ot P, e

in H converges weakly to zero, since

e = (h,on) >0 (n— )

for arbitrary h € H, in view of the fact that
el < (b h) < .

Such a sequence, of course, does not converge in the norm.

In particular, applying these remarks to the case when H is the space of
square integrable functions on a closed interval [a, b] of the real line with
the usual Lebesgue measure, we obtain the following interesting result:

Let
SHQV. R ﬁ::y ct

be an orthonormal set of functions in H, and let

() = 1 (on [t1, t)] < [a, b)),
0 (outside [¢ , #]).

Then
v "
(Fow) = [ outt) a.
1
Hence
ty
[Ceityat—0
ti
for an arbitrary orthonormal set of functions ¢,(¢) and arbitrary ¢, .

12 m ﬁQ. S
If the () are uniformly bounded,

[eiwa=1
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only if the number of sign changes of ¢, (¢) on [a, b] is unbounded as n — o«
(the same is to be observed, for instance, in the case of trigonometric
functions).

In Chapter III, parallel with the concept of weak convergence of the
elements of a linear normed space, we introduced the notion of weak con-
vergence of a sequence of functionals. Inasmuch as Hilbert space coincides
with its conjugate space, these two types of convergence are identical.
Therefore, Theorem 1’ of §28 yields the following result for Hilbert space H:

The unit sphere in H is weakly compact, that s, every sequence ¢, € H,
with || en || < 1, contains a weakly convergent subsequence.

In the sequel we require in addition the following

TaEOREM 1. If £, s weakly convergent to & in H, then

&1l < sup | &l

Proof. For every complete orthonormal set {¢:} in H,
¢ = (& o) = liMpsw (£, o) = liMpoc Cat
D1t = liMpce Dot Cum’ < SUDn Dt G’
consequently, '

o 2 0 2
D et Cm’ < SUDR D et Camy

which proves the theorem.

Let B({, g) be a real-valued function of pairs of elements of H satisfying
the following condition: B(Jf, g) is a linear functional of f for fixed g, and a
linear functional of g for fixed f. B(f, g) is called a bilinear functional.
A bilinear functional B(f, g) is said to be symmetric if

B(f,9) = B(g, f) (f,g € 5.

The theorem on the general form of a linear functional in H implies that
every bilinear functional in H can be written in the form

.woqu Qv = Aw.v Qvu

where ¢ depends on f. It is easily seen that the correspondence

/ , f—¢

is a continuous linear operator in H; denote it by A. Hence
(2) B(f, 9) = (4f, 9).
An alternative form

B(f,9) = (f, A%,
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where A* is the adjoint operator of 4, can be obtained in a similar fashion.
[In Chapter III, in considering linear operators on an arbitrary Banach
space E, we defined the adjoint operator A* of A by means of the relation

(Az, ¢) = (z, A%p) (z € E,p € E).

If E is a Hilbert space, then £ = E, and the definition of A* in Chapter III
reduces to the definition given above.] If a functional B(f, ¢) is symmetric,
then

(4f,9) = B(f,9) = B(g,f) = (4g, f) = (f, 4g),
that is,
(3) A = A*.

A linear operator satisfying (3) is said to be self-adjoint.

Formula (2) defines a one-to-one correspondence between the bilinear
functionals and the continuous linear operators on H, with the symmetric
bilinear functionals corresponding to the self-adjoint linear operators, and
conversely.

Setting f = ¢ in a symmetric bilinear functional, we obtain a quadratic
functional

Q)

It

B(f, ).
According to (2),

Q) = (4Af, 1),

where A is a self-adjoint linear operator.

Since the correspondence between the symmetric bilinear functionals and
the quadratic functionals is one-to-one [Q(f) = B(J, f), and conversely:
B(f, 9) = YO + g) — Q(f — g)}], the correspondence between the
quadratic functionals and the self-adjoint linear operators is also one-to-
one.

EXERCISES

1. Let M be a proper subspace of H, F(h) a (bounded) linear functional
on M with norm || F ||. Then there exists a linear functional F* on H such
that F*(h) = F(h) for h € M and || F*| = || F |. (See vol. 1, p. 86, the
Hahn-Banach theorem.) Hint: Apply equation (1) at the beginning of this
section to the Hilbert space M.

2. a) Let {fs} and f(z) belong to H. If {f.} converges strongly to f,
then {f,} converges weakly to f.

b) The converse is false. Show that for Ly(R, u), where R = [0, 1]
and p is linear Lebesgue measure, that {sin nz} is weakly convergent to
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f(z) = 0, but {sin na} is not fundamental in the norm; hence it cannot
converge strongly to any element of L.

¢) The following partial converse is true. If {f,} converges weakly to
f and || fa || converges to || f||, then {f.} converges strongly to f. Hint:
Show that (f — fu.,f — fa) — 0.

3. Suppose 4 € H. If A is weakly closed, then A is a norm closed subset
of H. More explicitly: Suppose {f.} € 4 and (f., g) — (f, g) for every
g € H implies that f € A. Show that || f. — f|| — 0 and {f,} < A implies
fed.

4. The definition of weak convergence of {h,} to k in H lists two condi-
tions. We propose to show that the second condition already implies the
first. This result in a more general setting is known as the Banach-Stein-
haus theorem.

a) It is enough to show that there exists a constant M > 0 and a
sphere S = {g: | g — go || < r} such that g € S implies | (h., g) | < M.
For if this implication holds and || g || < r, then

[ (has @) | = | (hayg + g0) = (ha,go) | <
Now show that g € H implies

| (hnyg) | < (2M/7) |l g |l

and consequently
I || < 2M/r.

b) It follows that if the result is false, the sequence {| (ks , ¢) |} must
be unbounded in every sphere, i.e., given @ > 0 and S a sphere in H,
there is an element g, € S and an index n, for which | (h.,, g.) | > a.
Show by continuity of (k, ¢g) in the second argument that S contains a
closed sphere S, such that g € S, implies | (h.,, g) | > a.

¢) Now construct by induction a sequence of closed spheres Tm&
and a sequence {n} such that Sy C Sk ;diam S, < 1/k;ny < my < -
e < coc5mg— o and | (b, g)| > kforg € S;.

d) Use the completeness of the metric space H to show the existence
of a point go for which | (ka, , go) | > k. This contradicts Condition 2):
(ha » go).= (R, go)-

5. Let M, and M, be two subspaces with M; a proper subset of M, .
Show that there exists an element g of M, such that [|g| = 1 and
lg — fll = 1for any f € M, . Hint: Consider M, as a Hilbert space with
subspace M, .

6. a) Let X be a Banach space, M a subspace of X and & = M + z =
{y + x:y € M} a subset of X defined for each x € X. We can make the
collection {Z:x € X} = X/M into a vector space, called the quotient space
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of X mod M by defining  + 7 = {M + (z + y)} and aZ = {M + az}.
Verify that the operations are uniquely defined msm that X /M is a vector
space with zero element 0 = M.

b) A norm is introduced by defining

2] =i

1.

Show that X/M is a normed linear space. The fact that M is closed is
required to show that || Z | = 0if, and only if, =

c) It is also true that X/M is complete, i.e., X/M is a Banach space.
This is more difficult to prove.

7. If X = H and M is a subspace of H, show that H/M and H © M are
isomorphic normed vector spaces. In other words, suppose that f € H,
f=h+ N, with h € M, ¥ € M'. Suppose that f corresponds to &’ and
show that this correspondence is one-to-one, onto and preserves addition,
multiplication by scalars, and the norm. Hint: || f||* = || |* + || &' |

§69. Completely continuous self-adjoint operators in H

In Chapter IV we introduced the notion of a completely continuous
linear operator, acting on a Banach space E. In this section we restrict
the discussion to self-adjoint completely continuous operators acting on a
Hilbert space, supplemented by the results already established for arbi-
trary completely continuous operators.

We recall that we called an operator A completely continuous if it
mapped every bounded set into a compact set. Inasmuch as H = H, that
is, H is conjugate to a separable space, the bounded sets in H are precisely
the weakly compact sets (see Ex. 1 at the end of the section). Therefore,
the definition of a completely continuous operator on a Hilbert space can
be stated as follows:

An operator 4 acting on a Hilbert space H is said to be completely con-
tinuous if it maps every weakly compact set into a compact set (relative to
the norm).

In a Hilbert space this is equivalent to the condition that the operator 4
map every weakly convergent sequence into a norm convergent sequence
(see Ex. 2 at the end of the section).

In this section we shall prove the following fundamental theorem, a
generalization to completely continuous operators of the theorem on the
reduction of the matrix of a self-adjoint linear transformation in n-dimen-
sional space to diagonal form:

THEOREM 1. For every completely continuous self-adjoint linear operator A
on a Hilbert space H there exists an orthonormal set of eigenvectors (characteris-
tic vectors; see vol. 1, p. 110) {e,}, corresponding to eigenvalues (characteristic
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values) {\.}, such that every &£ € H can be written uniquely in the form § =
M.UQ crpr + &, where the vector £ satisfies the condition A = 0. Also

At = M» NeCrpre

and lim,.e Ar = 0. .
For the proof of this fundamental theorem we require the following

lemmas:
LemMa 1. If {£&} converges weakly to & and the self-adjoint linear operator
A is completely continuous, then

Q&) = (A&, &) — (45 8) = Q(&).

Proof.
| (A, &) — (A8 5) | < | (A&, &) — (4, §) + (46, £) — (48 8) |.
But
| (Abas &) — (A&, 8) | = |G, Al — D S &l A& — 8 |l
and

| (A8, &) — (A5 8| = | (5 A& — )| < lEll-14& — ) .
Since the numbers || £, || are bounded and || A(¢& — §) | — 0,

| (A&, &) — (A& £) | 0.

This proves the lemma.
LemMa 2. If a functional

Q&) | = [ (4% 8) |,

where A is a bounded self-adjoint linear operator, assumes a maximum at a
point & of the unit sphere, then

(b,n) =0
implies that
(A&, n) = (%, 4n) = 0.
Proof. Qwiocmq, & = 1. Set
CoE= (Gt an)/A+d |,
where a is an arbitrary number. From || & || = 1 it follows that
&l = 1.

Since

QE) = (14 d [ 1]H7Q&) + 2a(4&, m) + a’Q(n)],
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it follows that
Q%) = Q&) + 2a(4%, 1) + 0(a®)

for small values of a. It is clear from the last relation that if (A&, n) = 0
then a can be chosen so that | Q(#) | > | Q(%) |. This contradicts th
hypothesis of the lemma.

It follows immediately from Lemma 2 that if | Q(£) | assumes a maximun
at £ = &, then & is an eigenvector of the operator 4.

Proof of the theorem. We shall construct the elements ¢, by induction, i

the order of decreasing absolute values of the corresponding eigenvalues
[M]> e > N>

To construct the element ¢; we consider the expression Q(£) = | (4¢, £)
and show that it assumes a maximum on the unit sphere. Let

S=supf{| (4§ &) ;£ <1
and suppose that & , &, - - - is a sequence such that || £, || < 1 and
_A\»maumav_l.vm (n— =)

Since the unit sphere in H is weakly compact, {£,} contains a subsequenc
weakly convergent to an element 5. In view of Theorem 1, §58, || 7| < 1
and by Lemma 1,

| (An,2) | = 8.

We take 5 as ¢, . Clearly, || n || = 1. Also

Aer = Nen,
whence

M| =1 (4er, @) |/(e1r, 1) = | (Aer, 1) | = 8.

Now suppose that the eigenvectors

1y 3 Pn
corresponding to the eigenvalues

A,y e
have already been constructed. We consider the functional

| (48, £)|
on the elements of
M, =Ho M, +,e¢a)
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(that is, the set orthogonal to ¢, - -, ¢.) and such that || £ || < 1. M)’
is an invariant subspace (a subspace which is mapped into itself) of 4
[since M (g1, +--, @a) is invariant and A is self-adjoint]. Applying the
above arguments to M, , we obtain an eigenvector ¢,41 of A in M, .

Two cases are possible: 1) after a finite number of steps we obtain a
subspace M,,’ in which (4¢, £) = 0;2) (4, £) 2 0 on M, for all n.

In the first case Lemma 2 implies that A maps M,,’ into zero, that is,
M., consists of the eigenvectors corresponding to N = 0. The set of vec-
tors {¢,} is finite.

In the second case we obtain a sequence {¢,} of eigenvectors for each of
which A, # 0. We show that A, —— 0. The sequence {¢,} (like every ortho-
normal sequence) is weakly convergent to zero. Therefore, Ap, = Aagn
converge to zero in the norm, whence | M, | = || Aen || — 0.

Let

M’ = Ho Mg, = N, M, 0.
If £ € M’ and £ # 0, then
(488 < |\ EI°

for all n, that is,
(4 %) = 0.

Hence, applying Lemma 2 (for sup {| (4& &) |; | £]| £ 1} = 0) to M’, we
obtain A¢ = 0, that is, A maps the subspace M’ into zero.

From the construction of the set {¢,} it is clear that every vector can be
written in the form

£E= Ma cror + & A\Hm‘.u 0).

Hence
A = 3 MCror -

EXERCISES

1. Let 4 WV,m continuous linear operator of H into H. Suppose that
{f.} © H, f € H and {f.} converges weakly to f. Show that {Af.} converges
weakly to Af. .

2. In the second paragraph of this section it is stated that in H the norm
bounded sets are precisely the weakly compact sets. Show that this is true
as follows:

a) If A € H is norm bounded, i.e., there exists an M > 0 such-that
Ifll < M forallf € A, then Theorem 1’ of §28 (see vol. 1) shows that 4
is weakly compact (see the statement preceding Theorem 1 in §58).
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b) If A is weakly compact, show that 4 is norm bounded. Use Ex. 4 of
§58 for this purpose.

3. In the fourth paragraph of this section it is stated that the following
two properties of an operator A on H are equivalent:

a) A maps every weakly compact set into a norm compact set.

b) A maps every weakly convergent sequence into a norm convergent
sequence.

Prove that a) and b) are equivalent.

4. Let A be a continuous (bounded) linear operator of H into H with
the additional property that A (H), the range of 4, is contained in a finite-
dimensional subspace of H. Then A is completely continuous. Hint: The
Bolzano-Weierstrass theorem holds in E, .

5. Let A be a completely continuous operator, T = I — A and suppose
M C H, M = {z:Tx = 0}. Show that M is a finite-dimensional subspace
of H.

§60. Linear equations in completely continuous operators

We conside he equation
(1) £ =cAt + n,

where 4 is a completely continuous self-adjoint operator, 5 € H is pre-
seribed and ¢ € H is the unknown.
Let

Ly """ 3y Pny "

be the eigenvectors of A corresponding to the eigenvalues different from
zero. Then » can be written as

(2) 1= D nlupn + 1,
where Ay’ = 0. We shall seek a solution of (1) of the form
(3) E= D nTupn + &,
where A& = 0. Substitution of (2) and (3) into (1) yields

ol = Mo + & = Dnaagn + 7'
This equation is satisfied if, and only if,
¢=1,
Za(1 — Nac)

Qn

that is, if
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(4) Zn = @,/ (1 — AyC) (M 5= 1/¢),
a, =0 A\ = 1/c).

The last equality gives a necessary and sufficient condition for a solution
of (1), and (4) determines the solution. The values of z, corresponding to
those » for which A\, = 1/c remain arbitrary.

§61. Integral equations with symmetric kernel

The results presented in the preceding section can be applied to integral
equations with symmetric kernel, that is, to equations of the form

b
(1 1) = o) + [ K(t,9)5(s) ds,
where K(, s) satisfies the conditions
1) K(t,8) = K(s, 8),
2) \,\a%?& ditds < .

The application of the results of §60 to equations of the form (1) is
based on the following theorem:

THEOREM. Let R be a space with measure u. If a function K(t, s) defined
on R* = R X R satisfies the conditions

(2) K(t,8) = K(s,t)
and
(3) \2 K'(t,8) du’ < w (W =p ® u),

then the operator

g = Af
defined on Ly(R, p) by the formula

o(t) = \a K(t, 5)§(s) dus

s completely continuous and self-adjoint.

Proof. We shall denote the space Ly(R, u) simply by Ly . Let {¢.()} be
a complete orthonormal set in L, . The collection of all possible products
¥n(t)¥m(s) is a complete orthonormal set of functions in R? (see Ex. 3,
§54), and

(4) K(t,8) = 2m 2on Cnndn(t)¥m(s)
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in the mean [i.e, 2 m 2 » converges to K in the norm of L, (R, u*)), where
Omn = Onm

(in view of (2)), and
MS MU: QS:» = NW»A& %v &tu < o,
R2

We set
() £(5) = 22n ba¥n(s)
in the mean. Then
6)  g(2) = (AN@ = Ln (Lo tmaba)¥n(z) = Lim Ca¥n()
in the mean. Also
tn’ = (X1 Gmabn)’ < Dom1 G’ 2onm b’ = [|f [0’y
where
U = Do Qo
Since the series
ot Gn’ = 2im 2on Omn’
converges, for every e > 0 there is an m, such that
D et G < €
lg(2) — Tt catm(@) [P = Zmemprrcn’ < el 1%

Now suppose that { %@J is weakly convergent to f. Then the correspond-
ing ¢.® converge to c. for every m. Hence the sum

™0 Cm Ym()

(7)

converges in the mean to the sum
“MPH 0§~N\§A&v

for arbitrary fixed mo . In view of the inequality (7) and the Woz:%mbmmm
of the norm || f® || it follows that {g® ()} (where g® = Af®) converges
in the mean to g(z). This proves that 4 is completely continuous. Multi-
plying (4) by (5), integrating with respect to u. and comparing the result
with (6), we see that

(4f)(s) = \ K(s, £) 1(t) duc.
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This and Fubini’s theorem imply that

) = [[ ([ Ko 050 duo)) a

\M\S A\a K(s, t)g(s) &Ev due

= A.\.ﬁ %vi

that is, 4 is self-adjoint. This proves the theorem.

Hence the solution of an integral equation with symmetric kernel satis-
fying conditions (2) and (3) reduces to finding the eigenfunctions and
eigenvalues of the corresponding integral operator. The actual solution of
the latter problem usually requires the use of some approximation method,
but such methods are outside the scope of this book.

Il

EXERCISES

1. Let B = [a, b] be an interval on the real line,  linear Lebesgue meas-
ure, H = Ly(R, u), K(¢, s) as in the theorem of §61. Then by Theorem 1 of
§59, the operator A determined by K has an orthonormal sequence of eigen-
functions {g,} corresponding to a sequence {\,} of eigenvalues A, 5= 0.
Further, for f(¢) € H, f(t) = 2 %4 (f, er)er(t) + h(t) in the mean, with

An=0,ie. [ MOK(L5) du=0and g(s) = (4N)E) = Tizahls, en)ee(s)
in the mean.

Suppose now that there is a constant M such that \. | K(t,s) |* dus < M*
R

for all ¢ € [a, b]. An example is furnished by K(¢,s) = [t — s|™ a < 1.
Show that the series for g(s) will converge uniformly and absolutely
(pointwise) to g(s).
Hints: For uniform convergence, apply the condition and Schwarz’s
inequality. For absolute convergence, show that mean convergence of a
series with orthogonal terms is equivalent to convergence of the series with

positive terms (D || ¢ ||°) and that therefore the convergence is inde-
pendent of the order of the terms.

SUPPLEMENT AND CORRECTIONS TO VOLUME 1

(1) p. 28, 1. 23. Substitute Ga(z) for Ga . .

(2) p. 46, 1. 13* (1. 13 from bottom). Replace “the anro.m of successive
approximations is not applicable” by ‘‘the method of successive approxima-
tions is, in general, not applicable”. . .

(3) p. 49, after 1. 10* insert: “An arbitrary continuous function may be
chosen for fo(z)”. . o

(4) p. 50, 1. 1*. Replace the \ after the inequality sign by | A |.

(5) p. 51, 1. 2. Replace M by M". ) )

p. 51, 1. 3. Replace M by M" (two times). Replace by | A |* (two
times). o
p. 51, 1. 5. Replace A" by | A |"M". o
(6) p. 56, 1. 6. Replace “closed region” by “closed bounded region”.
p. 59, 1. 2*. Replace the first occurrence of ¥ by N . .

(7) p. 61, after 1. 9 insert: “A mapping y = f(x) is said to be :3&.33@
continuous if for every ¢ > 0 there is a & > 0 such that p(f(z1), flz)) <'e
for all @, , &, for which p(2;, 22) < 8. The following theorem holds: mﬂ.\az\
continuous mapping of a compactum into a compactum s gsﬁ,oi;m@ a.ozssﬁ-
ous. This theorem is proved in the same way as the uniform continuity of a
function continuous on a closed interval”. .

(8) p. 61, 1. 18. After “Proof” insert: “We shall prove the .bonmmm;%
first. If D is compact, D contains a finite ¢/3-chain fi, - -+, fv. Since mw&w
mapping f; is continuous, it is uniformly continuous. Therefore, there is a
8 > 0 such that

p(fi(z1), fi(x2)) < €/3 (1<i<n)
if
bA&u ) 8nv < 8.
If f € D, there exists an f; such that

o, 1) < ¢/3.
Then
p(f(1), f(22)) < p(f(@), filz1)) + p(fil@r), fi(2a))
+ p(fi(xs), f(x2)) < €/3 + /3 + €/3 = ¢

if p(21, 23) < 6. But this means that the set of all f € D is equicontinuous.
We shall now prove the sufficiency.”
(9) p. 72, L. 3*. Replace “max” by “sup”. . . )
(10) p. 77, 1. 9. Replace “continuous” by “continuous at a point x,”.
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p. 77,1 13. Replace || z; — ;|| by || 2 — a0 .
p. 77, L. 11. Replace | f(z1) — f(2s) | by | f(z) — f(z0) |.

p. 77, 1. 20. Replace “continuous” by “uniformly continuous”.
Delete “everywhere in R”.

(11) p. 80, 1. 9*. Replace “z, ¢ L,” by “xy is a fixed element of the
complement of L,”.

(12) p. 84, 1. 12. Replace “sup, z,” by “sup, | z, |”.

(13) p. 92, 1. 14*, 13*. The assertion that the functionals d¢, generate a
dense subset of C is not true. Replace “satisfies the conditions of Theorem
1, i.e. linear combinations of these functionals are everywhere dense in
Clast” by “has the property that if a sequence {z,()} is bounded and
¢(2s) — ¢(z) for all ¢ € A, then {z,(1)} is weakly convergent to x(t)”.

(14) p. 94, 1. 9* ff. The metric introduced here leads to a convergence
which is equivalent to the weak convergence of functionals in every bounded
subset of £ (but not in all of ). In 1. 6%, after “so that” insert “in every
bounded subset of B”. On p. 95, 1. 10, after “that” insert “for bounded
sequences of R”.

(15) p. 116. The proof of Theorem 5 contains an error. It should be
replaced by the following:

Proof. 1°. We note first that every nonvanishing eigenvalue of a com-
pletely continuous operator has finite multiplicity. In fact, the set E) of all
eigenvectors corresponding to an eigenvalue A is a linear subspace whose
dimension is equal to the multiplicity of the eigenvalue. If this subspace
were infinite-dimensional for some A » 0, the operator 4 would not be
completely continuous in Ej, and hence would not be completely con-
tinuous in the whole space.

2°. Now to complete the proof of the theorem it remains to show that if
{\a} is a sequence of distinct eigenvalues of a completely continuous op-
erator 4, then \, — 0 as n — . Let z, be an eigenvector of 4 correspond-
ing to the eigenvalue \,. The vectors z, are linearly independent. Let
E. (n = 1,2, ---) be the subspace of all the elements of the form

Yy = i1 0T
For each y € E,, ,
Yy — Valuk..q\ = Mm_nﬂ al; — Mm.n_u Qe.v:.yzluﬁa. = Mu.ﬂlwa AH —_ v:.ysluvﬁm&a..

whence it is clear that y — \, Ay € E,_,.
Choose a sequence {y,} such that

Ya € B, ) __ Yn = =1, bQ\: ) .m.almv > W

(The existence of such a sequence was proved on p. 118, 1. 6 ff.)
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We now suppose that the sequence 1/, is bounded. Then the set
{A(ya/Na)} is compact. But this is impossible, since

__ A(yp/Np) — A(Ya/No) =
= __ Yo — p — V@I_\:\s + A(ya/N)] __ >3 (p>9),

inasmuch as ¥, — Ay ‘AY, + A(yo/N;) € Ep1 . This contradiction proves
the assertion. .

(16) p. 119, 1. 12. The assertion that Gy is a subspace is S.mmm but not
obvious. Therefore the sentence “Let Gy be the subspace consisting of all
elements of the form z — Az’ should be replaced by the following: “Let
Gy be the linear manifold consisting of all elements of the moﬁb. x — Az.
We shall show that Gy is closed. Let T be a one-to-one mapping .& @o
quotient space E/N (where N is the subspace of the elements .mmﬁmaazm
the condition z — Az = 0) onto Gy . (For the definition of Mﬁoﬁo&u space
see Ex. 5, §57.) We must show that the inverse mapping 1" is oobﬁbz.oc.m.
It is sufficient to show that it is continuous at ¥ = 0. Suppose that this is
not so; then there exists a sequence y, — 0 such that || £, || N.w > 0, where
£, = T 'y, . Setting n, = &/|| & || and 2, = ya/|| & ||, we obtain a sequence
{n.} satisfying the conditions:

la2. |l =1, Ton = 2, — 0.

If we choose in each class 5, a representative z, such that || 2, || M 2, we
obtain a bounded sequence, and z, = Tz, = z, — Az, — 0. But since the
operator A is completely continuous, {Az,} contains a fundamental subse-
quence {Az,,}. The sequence z, = 2, + Az, (where z, = 2., andz, = Znp)
is also fundamental and therefore converges to an element x,. Hence
2, = Tx, — Txo, so that Tzy = 0, that mm., o € N. But .%ob.__ ] <
| z, — @0 || — 0, which contradicts the condition || 7, __. = 1. This contra-
diction proves the continuity of T ! and shows that Gy is closed. Hence Gy

is a subspace”’.
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DE RE METALLICA, Georgius Agricola. The famous Hoover translation of great-
est treatise on technological chemistry, engineering, geology, mining of early mod-
ern times (1556). All 289 original woodcuts. 638pp. 6% x 11. 60006-8

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach
developed by U.S. Air Force Academy. Designed as a first course. Problems, exer-
cises. Numerous illustrations. 455pp. 5% x 8%. 60061-0

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced stu-

dents of ground water hydrology, soil mechanics and physics, drainage and irrigation

engineering and more. 335 illustrations. Exercises, with answers. 784pp. 6% x 9%.
65675-6

ANALYTICAL MECHANICS OF GEARS, Earle Buckingham. Indispensable ref-
erence for modern gear manufacture covers conjugate gear-tooth action, gear-tooth

profiles of various gears, many other topics. 263 figures. 102 tables. 546pp. 5% x 8.
65712-4

MECHANICS, J. P. Den Hartog. A classic introductory text or refresher. Hundreds
of applications and design problems illuminate fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x 8. 60754-2

MECHANICAL VIBRATIONS, J. P. Den Hartog. Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations to a variety of
practical industrial engineering problems. Numerous figures. 233 problems, solu-
tions. Appendix. Index. Preface. 436pp. 5% x 8%. 64785-4

STRENGTH OF MATERIALS, J. P. Den Hartog. Full, clear treatment of basic
material (tension, torsion, bending, etc.) plus advanced material on engineering
methods, applications. 350 answered problems. 323pp. 5% x 8%. 60755-0

A HISTORY OF MECHANICS, René Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8%. 65632-2
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METAL FATIGUE, N. E. Frost, K. J. Marsh, and L. P. Pook. Definitive, clearly writ-
ten, and well-illustrated volume addresses all aspects of the subject, from the histori-
cal development of understanding metal fatigue to vital concepts of the cyclic stress
that causes a crack to grow. Includes 7 appendixes. 544pp. 5% x 8. 40927-9

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill.
Standard text covers fundamentals of statistical mechanics, applications to fluctuation
theory, imperfect gases, distribution functions, more. 448pp. 5% x 84%. 65390-0

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lanczos.
Graduate level coverage of calculus of variations, equations of motion, relativistic
mechanics, more. First inexpensive paperbound edition of classic treatise. Index.
Bibliography. 418pp. 5% x 8%. 65067-7

THE VARIOUS AND INGENIOUS MACHINES OF AGOSTINO RAMELLI:
A Classic Sixteenth-Century Illustrated Treatise on Technology, Agostino Ramelli.
One of the most widely known and copied works on machinery in the 16th century.
194 detailed plates of water pumps, grain mills, cranes, more. 608pp. 9 x 12.
28180-9

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An
Introduction, David A. Sanchez. Brief, modern treatment. Linear equation, stability
theory for autonomous and nonautonomous systems, etc. 164pp. 5% x 8%.

63828-6

ROTARY WING AERODYNAMICS, W. Z. Stepniewski. Clear, concise text cov-

ers aerodynamic phenomena of the rotor and offers guidelines for helicopter perfor-

mance evaluation. Originally prepared for NASA. 537 figures. 640pp. 6% x 9%.
64647-5

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-
prehensive, classic introduction to space-flight engineering for advanced undergrad-
uate and graduate students. Includes vector algebra, kinematics, transformation of
coordinates. Bibliography. Index. 352pp. 5% x 8%. 65113-4

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excellent
historical survey of the strength of materials with many references to the theories of
elasticity and structure. 245 figures. 452pp. 5% x 8%. 61187-6

ANALYTICAL FRACTURE MECHANICS, David J. Unger. Self-contained text
supplements standard fracture mechanics texts by focusing on analytical methods for
determining crack-tip stress and strain fields. 336pp. 6% x 9%. 417379

e

Mathematics -

HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS,
GRAPHS, AND MATHEMATICAL TABLES, edited by Milton Abramowitz and
Irene A. Stegun. Vast compendium: 29 sets of tables, some to as high as 20 places.
1,046pp. 8 x 10%. : 61272-4
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FUNCTIONAL ANALYSIS (Second Corrected Edition), George Bachman and
Lawrence Narici. Excellent treatment of subject geared toward students with back-
ground in linear algebra, advanced calculus, physics and engineering. Text covers
introduction to inner-product spaces, normed, metric spaces, and topological spaces;
complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and
many other related subjects. 1966 ed. 544pp. 6% x 9%. 402517

ASYMPTOTIC EXPANSIONS OF INTEGRALS, Norman Bleistein & Richard A.
Handelsman. Best introduction to important field with applications in a variety of sci-
entific disciplines. New preface. Problems. Diagrams. Tables. Bibliography. Index.
448pp. 5% x 8. 65082-0

FAMOUS PROBLEMS OF GEOMETRY AND HOW TO SOLVE THEM,
Benjamin Bold. Squaring the circle, trisecting the angle, duplicating the cube: learn
their history, why they are impossible to solve, then solve them yourself. 128pp.
5% x 8. 24297-8

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A. I. Borisenko
and L. E. Tarapov. Concise introduction. Worked-out problems, solutions, exercises.
257pp. 5% x 8. 63833-2

THE ABSOLUTE DIFFERENTIAL CALCULUS (CALCULUS OF TENSORS),
Tullio Levi-Civita. Great 20th-century mathematician’s classic work on material nec-
essary for mathematical grasp of theory of relativity. 452pp. 5% x 8%. 63401-9

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x 8%. 65942-9

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8%. 65973-9

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of recur-
rent functions. New preface and appendix. 288pp. 5% x 8%. 61471-9

ASYMPTOTIC METHODS IN ANALYSIS, N. G. de Bruijn. An inexpensive, com-
prehensive guide to asymptotic methods—the pioneering work that teaches by
explaining worked examples in detail. Index. 224pp. 5% x 8% 64221-6

ESSAYS ON THE THEORY OF NUMBERS, Richard Dedekind. Two classic
essays by great German mathematician: on the theory of irrational numbers; and on
transfinite numbers and properties of natural numbers. 115pp. 5% x 8%. 21010-3
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APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of
fundamentals of analytic function theory—plus lucid exposition of five important
applications: Potential Theory; Ordinary Differential Equations; Fourier Transforms;
Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at chapter ends.
512pp. 5% x 8%. 64670-X

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8%. 65191-6

MATHEMATICAL METHODS IN PHYSICS AND ENGINEERING, John W.
Dettman. Algebraically based approach to vectors, mapping, diffraction, other topics
in applied math. Also generalized functions, analytic function theory, more.
Exercises. 448pp. 5% x 8%. 65649-7

CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and pro-
motes understanding of specialized books, research papers. Suitable for advanced
undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 8%.
64856-7

COMPLEX VARIABLES, Francis J. Flanigan. Unusual approach, delaying com-
plex algebra till harmonic functions have been analyzed from real variable view-
point. Includes problems with answers. 364pp. 5% x 8%. 61388-7

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.
Graduate-level text covers variations of an integral, isoperimetrical problems, least
action, special relativity, approximations, more. References. 279pp. 5% x 8.

“ 65499-0

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the
work of Poincaré, R. Thom, other mathematicians. Also important applications to
problems in mathematics, physics, chemistry and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii + 666pp. 6% x 9%.
67539-4

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology, psy-
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8'.

65084-7

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. lassic text stresses frequency approach in coverage of algorithms, poly-
nomial approximation, Fourier approximation, exponential approximation, other
topics. Revised and enlarged 2nd edition. 721pp. 5% x 8%. 65241-6

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F. B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new problems.
669pp. 5% x 8'%. 65363-3
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Physics

OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J. H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum optical
resonance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x 8%. 65533-4

ULTRASONIC ABSORPTION: An Introduction to the Theory of Sound
Absorption and Dispersion in Gases, Liquids and Solids, A. B. Bhatia. Standard ref-
erence in the field provides a clear, systematically organized introductory review of
fundamental concepts for advanced graduate students, research workers. Numerous
diagrams. Bibliography. 440pp. 5% x 8%. 649172

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of qualitative and imaginative concepts, followed

by specific applications worked out in mathematical detail. Preface. Index. 655pp.
5% x 8%. 65969-0

ATOMIC PHYSICS (8th edition), Max Born. Nobel laureate’s lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic

structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 8%. 65984-4

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv + 360pp. 5% x 8%. 67597-1

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr’s model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The
Physics of the Chemical Bond, Walter A. Harrison. Innovative text offers basic
understanding of the electronic structure of covalent and ionic solids, simple metals,
transition metals and their compounds. Problems. 1980 edition. 582pp. 6% x M_ww »
66021-

HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem,; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8%. 64071-X

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%. 60304-0

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation, more.
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8%. 64926-1
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PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg.
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8%. 60113-7

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
best introductions; especially for specialist in other fields. Treatment is physical
rather than mathematical. 80 illustrations. 257pp. 5% x 8. 60115-3

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L.

Hill. Excellent basic text offers wide-ranging coverage of quantum statistical mechan-

ics, systems of interacting molecules, quantum statistics, more. 523pp. 5% x 84%.
65242-4

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. First paperback edition. xxiii + 885pp.
5% x 8'%. 65227-0

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems,
detailed solutions in coverage of quantum mechanics, wave mechanics, angular
momentum, molecular spectroscopy; more. 280 problems plus 139 supplementary
exercises. 430pp. 6% x 9%. . 65236-X

THEORETICAL SOLID STATE PHYSICS, Vol. 1: Perfect Lattices in
Equilibrium; Vol. IT: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equilibrium properties, defects and dis-
ordered systems. Appendices. Problems. Preface. Diagrams. Index. Bibliography.
Total of 1,301pp. 5% x 8'%. Two volumes. Vol. I: 65015-4 Vol. II: 65016-2

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics. Brings to final form Maxwell’s theo-
ry of electromagnetism and rigorously derives his general equations of field theory.
1,084pp. 5% x 8%. Two-vol. set. Vol. I: 60636-8 Vol. II: 60637-6

OPTICKS, Sir Isaac Newton. Newton’s own experiments with spectroscopy, colors,
lenses, reflection, refraction, etc., in language the layman can follow. Foreword by
Albert Einstein. 532pp. 5% x 8%. 60205-2

HEMOWN OF ELECTROMAGNETIC WAVE PROPAGATION, Charles Herach
Papas. Graduate-level study discusses the Maxwell field equations, radiation from
wire antennad, the Doppler effect and more. xiii + 244pp. 5% x 8%. 65678-5

INTRODUCTION TO QUANTUM MECHANICS With Applications to
Chemistry, Linus Pauling & E. Bright Wilson, Jr. Classic undergraduate text by Nobel
Prize winner applies quantum mechanics to chemical and physical problems.
Numerous tables and figures enhance the text. Chapter bibliographies. Appendices.
Index. 468pp. 5% x 8%. 64871-0
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METHODS OF THERMODYNAMICS, Howard Reiss. Outstanding text focuses
on physical technique of thermodynamics, typical problem areas of understanding,
and significance and use of thermodynamic potential. 1965 edition. 238pp. 5% x 8%.

69445-3

TENSOR ANALYSIS FOR PHYSICISTS, J. A. Schouten. Concise mx@o&mob of
the mathematical basis of tensor analysis, integrated with well-chosen physical exam-
ples of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%4. 65582-2

RELATIVITY IN ILLUSTRATIONS, Jacob T. Schwartz. Clear nontechnical treat-
ment makes relativity more accessible than ever before. Over 60 drawings illustrate
concepts more clearly than text alone. Only high school geometry needed.
Bibliography. 128pp. 6% x 9%. 25965-X

THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of electric and magnetic fields, builds up to electromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x 8%. 65660-8

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton’s laws of
motion, Chadwick’s study of the neutron, Hertz on electromagnetic waves, more.
Original accounts clearly annotated. 370pp. 5% x 8%. 25346-5

RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C.
Tolman. Landmark study extends thermodynamics to special, general relativity; also
applications of relativistic mechanics, thermodynamics to cosmological models.
501pp. 5% x 8%. 65383-8

LIGHT SCATTERING BY SMALL PARTICLES, H. C. van de Hulst. Compre-
hensive treatment including full range of useful approximation methods for
researchers in chemistry, meteorology and astronomy. 44 illustrations. 470pp. 5% x 8.

64228-3

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermody-
namics, statistical mechanics and kinetic theory in one unified presentation of ther-
mal physics. Problems with solutions. Bibliography. 532pp. 5% x 8%4. 65401-X
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- AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. (65940-2)

FINITE DIFFERENCE EQUATIONS, H. Levy: and F. Lessman. (67260-3)

GAMES AND DECISIONS: INTRODUCTION AND CRITICAL SURVEY, R. Duncan Luce and
Howard Raiffa. (65943-7)

FIRST ORDER MATHEMATICAL Loaic, Angelo Margaris. (66269-1)

ToroLoGY, George McCarty. (65633-0)

INTRODUCTION TO TOPOLOGY, Bert Mendelson. (66352-3)

THE WORLD OF MATHEMATICS, James R. Newman (ed.). (41153-2, 41150-8,
41151-6, 41152-4) Four-volume set

GEOMETRY: A COMPREHENSIVE COURSE, Dan Pedoe. (65812-0)

FUNCTIONAL ANALYSIS, Frigyes Riesz and Béla Sz.-Nagy. (66289-6)

APPLIED PROBABILITY MODELS WITH OPTIMIZATION APPLICATIONS, Sheldon M.
Ross. (67314-6)

INTRODUCTION TO THE CALCULUS OF VARIATIONS, Hans Sagan. (67366-9)

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip Barker.
(66014-1) -

GRroup THEORY, W. R. Scott. (65377-3)

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL, Walter A.
Shewhart. (65232-7)

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY (SECOND EDITION), Dirk J.
Struik. (65609-8) :

ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry Pollard.
(64940-7)

MODERN ALGEBRA, Seth Warner. (66341-8)

ADVANCED CALcuLUS, David V. Widder. (66103-2)

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY SOLUTIONS, A. M.
Yaglom and 1. M. Yaglom. (65536-9, 65537-7) Two-volume set .
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