Time-invariant linear system

We focus on discrete-time, time-invariant linear systems defined by

\[y(t) = \sum_{k=0}^{\infty} g(k) u(t-k), \quad t \geq 0 \]

(2.6)

Here \(u(t) \) is a scalar input signal and \(y(t) \) is a scalar output signal. The mapping from \(u \) to \(y \) is clearly linear and shift-invariant, hence called time-invariant. The system above is also causal, since in the sense that for any \(t \), the output \(y(t) \) depends only on \(u \) up to that time \(t \).
In the derivation above we may assume that \(u(0) = 0 \) for \(t < 0 \). Alternatively, we may also assume that \(u(t) \) is defined in a non-trivial way for \(-\infty < t < +\infty \). In this latter case we need to take care to impose appropriate conditions on \(g \) and \(u \) to ensure that (2.6) makes sense.

The Note holds

The observation that

Equation (2.6) can be also read in a

bit of a symmetric way.

In mathematical analysis the operation

that maps the \(\phi \) pair
Sequence y and v into the $2/3$.

Sequence y is called a convolution.

The shorthand notation for a convolution is

$$y = g * v,$$

with the tacit assumption that $g(k) = 0$ for $k \leq 0$.
In most cases the output is also affected by signals beyond our control. These are called disturbances. The simplest source of a disturbance is measurement noise. Thus we come to the following model:

$$y(t) = \sum_{k=1}^{\infty} g(k) u(t-k) + v(t)$$

A major feature of a disturbance is that its value is not known beforehand.

A key point in modelling is the statistical characterization of the statistical properties of the noise.